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Abstract. Researchers have recently noted [14, 27] the potential of fast poi-

soning attacks against DNS servers, which allows attackers to easily manipulate

records in open recursive DNS resolvers. A vendor-wide upgrade mitigated but

did not eliminate this attack. Further, existing DNS protection systems, includ-

ing bailiwick-checking [12] and IDS-style filtration, do not stop this type of DNS

poisoning. We therefore propose Anax, a DNS protection system that detects poi-

soned records in cache.

Our system can observe changes in cached DNS records, and applies machine

learning to classify these updates as malicious or benign. We describe our classi-

fication features and machine learning model selection process while noting that

the proposed approach is easily integrated into existing local network protection

systems. To evaluate Anax, we studied cache changes in a geographically diverse

set of 300,000 open recursive DNS servers (ORDNSs) over an eight month pe-

riod. Using hand-verified data as ground truth, evaluation of Anax showed a very

low false positive rate (0.6% of all new resource records) and a high detection

rate (91.9%).
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1 Introduction

The Domain Name System, or DNS, maps domain names to IP addresses and other

records essential for email, web, and nearly every significant network protocol. DNS se-

curity problems in turn affect numerous other services and critical resources. Recently,

the security community has identified fast poisoning techniques that allow the trivial

corruption of DNS records [23, 14]. A poisoning attack allows an adversary to manip-

ulate resolution caches, usually through a “blind” off-path guessing of the transaction

components used for DNS message integrity.

Several secure DNS protocols have been proposed, including DNSSEC [6, 7] and

DNSCurve [9]. DNSCurve provide link-level security while DNSSEC provide object-

based security of DNS messages using cryptographic means. However, the deployment

of DNSSEC has proven slow [26], and many hosts have on-path hardware that interferes

with DNSSEC’s larger packet sizes [8].

The delay in deploying secure DNS motivates the need for local networks to protect

their recursive DNS resolution infrastructure. Traditional solutions such as IDS and
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packet-inspection tools provide limited protections against some classes of attacks, but

do not detect DNS poisonings. Indeed, poisoning attacks generally use valid, “RFC-

compliant” DNS messages that contain misleading answers (e.g., associating a domain

with the wrong IP address or nameserver—one under the control of an attacker).

For this reason, DNS security systems are generally concerned with records in cache

(or in the resolver), as opposed to in flight (or on the wire). In this work, we focus on in

cache detection of DNS poisoning for similar reasons:

1. The in-line inspection of DNS traffic can introduce latency. Some protocols are

tolerant of this delay, but for DNS, even adding a few tens of milliseconds delay

can have detrimental impact on other services (e.g., VoIP, DNSBL validation, etc.).

In extreme cases, adding such delays can result in SERVFAIL responses.

2. Several tools already detect classes of DNS attacks, such as packet format viola-

tions (e.g., name pointer loops [4]). These attacks are orthogonal to DNS poisoning,

and must be done on the wire data, as opposed to the cached data.

3. Some DNS attacks, such as out-of-bailiwick record injection [35], are already re-

jected by the DNS resolvers themselves. Such attacks are technically DNS poi-

soning, but have been addressed by RFC 2181 [19] (and related policies) and are

routinely dropped by recursive servers. (This is known as “answer validation” in

most DNS resolvers [12].) The DNS poisoning attacks we consider are in the newer

family of fast poisoning or “Kaminsky-class” attacks, which evade these forms of

basic RFC 2181 trustworthiness checks. Note that the answer validation phase is

usually opaque in a DNS resolver, and server logging of rejected records is often

infeasible, mainly due to system performance and volume of the logs.

For these reasons, we focus on the detection of DNS poisoning that is found in

cache, in order to identify attacks that have evaded all existing layers of protection. To

detect DNS poisoning that has evaded all other layers of filtration, we need access to

large, busy recursive servers. In practice, such access is difficult to obtain, because of

the operational risk it poses to a critical network component, and because of potential

privacy concerns in witnessing stub traffic. We therefore decided to use data obtained

from the inspection of open recursive caches run by third parties on the Internet. Open

recursive resolvers [16] generally permit the inspection of their caches. Since we can

successfully detect poisonous Resource Records (RR) in Internet scale measurements,

we will be able to do the same when we inspect a less diverse set of recursive DNS

servers, e.g., those in a single organization.

We select 300,000 open recursive servers, in order to obtain a diversity of DNS re-

solvers based on geography, network size, and organizational type (e.g., corporate vs

university networks). The network properties of these hosts are discussed in Section 3.

Using this data source, we designed and evaluated a large-scale, centralized poisoning

detection system called Anax. Our implementation of Anax provides a scalable, central-

ized view of DNS poisoning. Further, it works in an automated manner with minimal

human intervention. Anax is able to perform these measurements without being on the

same network path as the attacker and victim. During our experiments, Anax was able to

successfully detect 319 unique poisoned resource records (RRs) that were subsequently

manually verified as DNS poisoning attacks. In addition, because Anax works on arbi-
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trary DNS caches, it can also protect local networks against poisoning even when the

local resolver is not open recursive.

Anax relies on a fundamental observation about DNS. Despite being dynamic, DNS

records generally direct users to a known, usually stable set of NS records. Poisonings

on the other hand, generally redirect victims to new, different IP addresses often set

up for furtive, short-lived harvesting of information (such as banking credentials, credit

card numbers and email passwords). We therefore created detection heuristics that note

the statistical DNS properties of answers. Our analysis shows that our features are stable

even against significant changes in legitimate DNS hosting.

We operated the Anax poisoning detection system for several months, resulting in

a database of tens of millions of DNS answer records. Using extensive classification

filters and heuristics we can reliably label the majority of the IPs in recorded RRs.

Using manual effort we verified by hand and labeled the remaining 1,264 unique IPs

address record as “legitimate” and “poisonous”. This labeled data set was then used to

train and test our detection module, as described in Section 3. The evaluation of Anax

based upon real world data proved so promising that it makes our system an efficient

real-time poisoning detection system.

The remainder of this paper is organized as follows. Section 2 provides in-depth

technical details of poisoning attacks and related work. Section 3 presents the detection

methodology that Anax utilizes. Section 4 details our experiments with Anax, including

validation and labeling steps of Anax’s dataset. In Section 5 we elaborate on the details

of the detection heuristics that Anax uses and present the detection results based on our

real-world data analysis. Finally, we conclude in Section 6.

2 Background and Related Work

This section offers a brief overview of the Domain Name System (DNS), addressing

aspects relevant to poisoning and detection. Readers familiar with DNS may skip over

this section. Further background on DNS can be found in [37].

2.1 Background on DNS Poisoning

DNS provides a distributed database of domain names organized as a tree structure.

A domain name is a node in the tree and is labeled with the minimum path used to

reach the node from the root. When expressed as a fully qualified domain name, each

node is a label separated by period. A zone is a collection of nodes under a common

parent. Such collections form a subtree, the top of which is called the start of authority.

Authority DNS servers answer queries about nodes in their zones, and generally provide

answers about mappings of leaf nodes (or terminus nodes), or a referral to another

sibling authority when sub-zones have been delegated to another authority server. The

answers from such authority servers are recorded by recursive DNS servers for caching

on local networks.

Although DNS poisoning could occur between the stub and forwarder (step one), or

the forwarder and resolver (step three), we are primarily concerned with attacks on the

path between the resolver and authority (step four in Figure 1). This path is by necessity
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Fig. 1: An overview of DNS resolution, and risks posed at each phase of the resolution path.

DNS poisoning is most commonly concerned only with risks experienced on step four, the

communication between resolvers and authorities.

exposed to the Internet. Since DNS responses are (with noted exceptions [36]) usually

a single UDP packet, attackers can send large numbers of spoofed, malicious answers

that are “off-path”. By “off-path” we mean that an attacker can spoof a UDP packet,

claiming to be the authority for a zone from any point on the Internet. Witnessing such

poisoning attacks requires the observer to be “on-path” (e.g., as a transit provider or

below/above the resolver). If one is not “on-path”, it is often difficult to observe such

DNS attacks [15].

The basic properties of traditional and Kaminsky-class DNS poisoning attacks have

been extensively studied [15, 16, 27]. The Kaminsky-class of DNS attack greatly speeds

up traditional DNS poisoning attacks that have historically been done by changing stub

DNS settings [16], shown in step two of Figure 1. This increase in the attack speed

due to Kaminsky class of poisoning can be achieved by repeatedly attempting to poison

“new” nonce names in a zone of interest. Even a bandwidth limited attacker will eventu-

ally win the packet race for one of the nonce child names [14], allowing for replacement

of the NS-type of record in cache. Recent industry studies have noted that DNS ma-

nipulations are not only used for phishing, but commonly used for “click-fraud” and by

spammers to drive traffic to malicious sites [32], as well.

2.2 Related work

Our work combines ideas from two areas of literature: DNS cache poisoning detection

and Internet-wide DNS-based measurement. While Anax is the first system to detect

Kaminsky-style DNS cache poisoning, it owes much to previous related research.

DNS cache poisoning is not a new phenomenon. Cache poisoning has been a known

vulnerability in DNS since at least 1993 [33], and has seen a resurgence issue in 1997 [35],

2002 [10], 2007 [25], and 2008 [23]. Despite many years of research in eliminating

cache poisoning, the latest attack was judged serious enough to warrant multi-vendor

coordinated patching [3].

Several vulnerability assessment tools and technologies allow the discovery of DNS

vulnerabilities often caused by misconfiguration. Nessus [1] and specific DNS related

tools such as DNSStuff [17] and PorkBind [11], detect DNS servers vulnerable to spe-
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cific cache poisoning attacks. In contrast, Anax detects actual cache poisoning instead

of vulnerabilities.

No available tool exists to detect actual in-cache poisoning. DoX [41] would use a

peer-to-peer network to detect cache poisoning, but it has never been tested in practice

nor deployed on the Internet, and this system would require a significant infrastructure

and the cooperation of other DoX nodes to be effective. In contrast to DoX, Anax is a

centralized system, does not require any external cooperation, and has been tested on

real world network scenarios.

Several solutions, such as DNSSEC [6, 7], DNSCurve [9], 0x20 encoding [15] and

WSEC-DNS [27], have been proposed to eliminate cache poisoning vulnerabilities en-

tirely. While these solutions would reduce or eliminate cache poisoning, they require

explicit or implicit changes to the DNS protocol, are not widely deployed, or are not

likely to find wide-spread adoption in the short term (maybe except DNSSEC).

Internet-wide measurement via DNS has been previously used to estimate delay

between two arbitrary hosts in King [21]. Anax’s goal is not to measure distances be-

tween arbitrary hosts, as King does, but to collect IP information about a set of “domain

names of interest” (detailed in Section 3.2) that King does not. Internet-wide DNS poi-

soning scans have been performed by The Measurement Factory [20], but these scans

only investigate parent zone poisoning, to which very few name servers are vulnera-

ble, while Anax can detect Kaminsky-class attacks, to which many currently deployed

servers are vulnerable. Anax is also able to detect cache poisoning targeted at a specific

resolver or set of resolvers. Wendlandt et ll. [38], proposed “Perspectives”, a system that

uses multiple hosts to verify a server’s public key. Our system has a similar scanning

methodology but the scope of the two systems is orthogonal; Anax deals with DNS RR

validation within cache, while “Perspectives” reactively validates public keys.

Finally, we note that our work has a superficial similarity to the Notos domain rep-

utation system [5]. Notos, created by many of the same authors of this work, uses ma-

chine learning to assign a reputation score to unknown domains according to given

trained categories (e.g., spam-related domains, botnet domains). In contrast, the present

study uses a very limited set of features to identify poisonous DNS records. While No-

tos allows one to identify groups of similar domains, Anax lets one judge the integrity

of selected in-cache records.

3 Methodology

In this section we describe the methods that Anax uses to detect cache poisoning. We

start with a discussion of the features inherent to cache poisoning attacks, in particular

how poisoning attacks may be detected by observing changes in records cached by

open-recursive DNS server (ORDNS).

Figure 2 shows the overview of the Anax poisoning detection system. In step one

the scanning engine sends to the scanning host a list of domain names and ORDNS

servers. The raw DNS answers from scanning (step two) are stored in the raw DNS

data collector. A one-time training step labels and verifies a portion of these records

(step three). After manually labeling the dataset, we send it to the detection engine for

modeling (step four). The resulting models around the benign and poisonous classes of
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Fig. 2: Anax Poisoning Detection System.

RRs will be stored in the Anax DB. At this point the system can be directly utilized (step

five) to classify new unknown RRs in DNS answers as they arrive from the scanning

points to the raw DNS data collector. Then, Anax can be switched to an on-line mode,

and detect new poisonous records using step six.

3.1 Abnormality in DNS Answers Due to Cache Poisoning

Kaminsky-class attacks have made cache poisoning even easier, especially against un-

patched servers or servers that cannot take advantage of full source port randomization

due to network configurations like NAT. As noted in section 2, poisoning attacks cre-

ate inherently local impacts, making it hard to observe once you are “off-path” of the

resolver.

The consensus of answers observed in the wild can be used to validate the resource

records (RRs) presented as valid answers. In practice, there are several nuances to this

simple approach. DNS can be used for load balancing, localizing content, and to mon-

etize typographical errors, so query results often vary, even without malicious manip-

ulation. To avoid effects of load balancing and content localization, it is necessary to

obtain consensus results based on network and geographic diversity.

An ORDNS that has been the victim of a cache poisoning attack, will answer “on-

path” queries using somehow different IP(s) in these RRs (Table 1, lower sub-table)

or NS(s) that cannot be correlated with the domain name we try to resolve (Table 1,

upper sub-table). Usually these IP(s) point to a different, attacker controlled server. The

answer for the poisoned record should inevitably contain at least a single different IP

than the IPs found in legitimate RRs for the same domain name. As noted in Section 2,

the only possible way to observe this variation in answers is to be “on-path” with the

ORDNS. In other words, one needs to be able to directly query the resolver for the

poisoned RR. Since we did not have access to customer transit data for this study, we

generated such data by utilizing two DNS scanning points: one located in California
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Domain Name NS CC Date ORDNS

amazon.com hu-bud02a-dhcp09-main.chello.hu HU 2009-07-26 Cisco CNR

americanexpress.com c.exam-ple.com PA 2009-03-20 BIND 9.2.3

americanexpress.com d.exam-ple.com PA 2009-05-05 Win DNS NT4

bankofamerica.com 209.59.194.246 US 2009-06-18 Win DNS 2003

bankofamerica.com 209.59.195.246 US 2009-06-18 Win DNS 2003

Domain Name IPs CC Owner ORDNS

americanexpress.com 189.38.88.129 BR CYBERWEB BIND 9.2.3

google.com 85.10.198.253 DE HETZNER-AS Win DNS 2000

visa.com 61.207.9.4 JP OCN NTT BIND 9.2.0

update.microsoft.com 205.178.145.65 US Net. Sol. No Match

google.com 65.98.8.192 US FORTRESSITX QuickDNS

Table 1: Poisoning cases observed by Anax. In the upper part of the table we can see NS

replacements observed in NS-type RRs. In the lower table we can see IPs in A-type RRs

that were manually labeled as poisoning cases. With the ORDNS column we provide the

type of ORDNS software from the poisoned resolver using the fpdns tool.

and one located in Ottawa. Using these two scanning points we probed a large, geo-

graphically and network diverse set of open recursive DNS servers, as discussed below.

To identify Kaminsky-class attacks (NS-type record replacements) and simple

DNS poisonings (A-type record manipulations), Anax relies on an inherent feature

of DNS poisoning: namely, that the poisoned ORDNS will report cached RRs that are

“abnormal” with respect to zone and the IP address space. We define as an abnormal the

RR with an IP that should not reside nor can be linked in any way with the poisoned

zone’s “network provisioning” — a network that can be associated with the zone’s

operator or a major Content Delivery Network (CDN). For example, a poisonous NS

record for amazon.com will point hosts to an authoritative name server (ANS) outside

of Amazon’s typical DNS provisioning address space. In other words, the IP address of

the attacker controlled ANS along with the IP address in the poisoned A-type records,

cannot be linked with Amazon’s IP address space or even worse it might be in dynamic

address space. This variation in the RRs can be measured externally as long as we can

be “on-path” with the ORDNS.

3.2 Probes and Measurements

Anax’s poisoning detection works in three discrete phases: preparation, measurement,

and analysis. The preparation phase consists of collecting IP addresses of open-recursive

DNS servers located throughout the world, determining which domains could be likely

targets of poisoning attacks, and probing open-recursive servers for poisoning detection

(DNS Scanning Engine, Figure 2).

During the measurement phase, Anax’s scanning engine performs a series of queries

while recording matching answers. All the resulting raw DNS traffic is placed in a fully

indexed database (Raw DNS Data Collector, Figure 2). Finally, in the analysis phase
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(Data Labeling and Detection Engine, Figure 2), Anax performs a series of checks on

the recorded RRs from all scanned open-recursive servers. Anax will be able to assign a

label for each unique RR of a given zone, and decide its legitimacy. The preparation and

measurement phases are described below; the analysis phase is described in Section 5.

Preparation The preparation phase of Anax is composed of three parts: the gathering

of ORDNS servers, the identification of domains likely to be poisoned, and the probing

of each ORDNS server for poisoning detection. ORDNS servers are gathered using the

method proposed by Dagon, et al. in [16]. Using this method, we were able to obtain

8,274,341 open-recursive DNS servers distributed throughout the world. Anax also pe-

riodically re-checks DNS resolvers to ensure they continue to behave as open-recursive

servers. It is very expensive to regularly probe all discovered ORDNS, therefore we

sampled a smaller but geographically diverse set of 300,000 ORDNSs. We made hun-

dreds of thousands of DNS queries to a large, geographically and network diverse set

of these 300,000 ORDNSs for 131 zones of interest. A small glimpse of the overall

ORDNS diversity from our scanning list with regard to the country code (CC), the au-

tonomous systems (AS) and CIDR block can be found in Figure 4.

Since traditional cache poisoning attacks only affect DNS cache entries for a spe-

cific domain, poisoning may only be checked on a per-domain basis. To create a list of

domains that are likely to be attacked, we combined the top 100 worldwide websites as

ranked by Alexa with the world’s top 100 e-business websites, yielding 131 unique do-

mains. These 131 domains are globally distributed, focus on a variety of industries, and

all have very high visitor counts. To the best of our knowledge, none of these domains

are used for malicious operation, and theoretically the domain names and IPs from these

sites should not be part of any black list. The amount of financial transactions conducted

through these sites also makes them very tempting targets for phishing attacks (as noted

by several on-line phishing analysis resources [34]), that potentially could be staged via

DNS poisoning. We refer to this list of 131 domains as the “domains of interest”.

Measurement Anax uses repeated queries to discover IP address records for the do-

mains of interest. Using the following scanning protocol, Anax maintains A-type

record information and NS-type record information for the domains of interest.

Anax’s scanning points issue a series of typical DNS queries like the one presented

in Figure 3. These scan points use such queries in order to capture the on-path behavior

of the ORDNS. A scan point always makes four types of queries to an ORDNS for

each of the domains of interest. The type of queries are A, NS, MX and AAAA. The main

reason for selecting these different types of queries is to discover as many different RRs

as possible for each zone without requiring access to the zone itself.

Let us assume that d is a domain of interest. The complete probing protocol we use

is the following querying sequence: the first query is an A-type and for the domain

dcontrol, which we own and for which we operate the only “legitimate” authority name

server (ANS). The A-type of record for this domain contains a single IP that we never

change. Using this simple technique we can check if the ORDNS server we probe is

acting as a real open-recursive, is misconfigured or provides a DNS-tunneling service.

The second query is an A-type and for the domain d. These queries provide Anax
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Anax's DNS 
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 ANS for example.com

A ? example.com A ? example.com

example.com IN 
A 192.0.32.10

example.com IN 
A 192.0.32.10

Fig. 3: A typical A-type query for ex-

ample.com to an open-recursive server

(ORDNS). In this case the ORDNS’s

cache is empty, and the ORDNS needs to

ask the authoritative name server (ANS)

of example.com in order to find the IP

that is currently “mapped” to the domain

name.

CC #ORDNS #ASs #CIDRs

US 116213 3785 14340

CN 34778 90 2574

JP 20147 329 1760

NL 17651 172 483

FR 16261 164 482

KR 14822 326 1316

IT 12824 204 569

GB 9587 414 952

DE 9441 408 818

SE 9119 113 355

Fig. 4: A summary of the diverse ORDNS

scanning targets.

with the current IP address of the probed domain d. The third is an A-type query

for random value.d. Since the random nonce (random value) does not exist, and

the zone does not use wild-card entries, this query ensures that the remote ORDNS

always reaches the authority name server (ANS) of d. This results in an answer of

NXDOMAIN. We are certain about this since we can trivially verify that none of the

zones of interest are wild-carded in the 2nd level domain (2LD). The fourth query

is an NS-type query for d, from which Anax discovers the current IP and domain

name information about the authority name servers for the domain name d. Some CDN

enabled zones (e.g., bestbuy.com) tend to have their authority name servers operated

by the CDN network. We want to capture this diversity in our dataset.The fifth query

is an MX-type query for d, which provides us with the current email servers for the

domain name d. Typically this IP location is managed by the same owner of the domain

name d. Some zones, however, simply outsource their e-mail services (e.g., AT&T and

MessageLabs). The sixth is an AAAA-type query for the domain name d, based on

which we can record again the start of authority record (SOA-type) for the domain d.

As noted above, we probe using this sequence of queries so we can obtain key char-

acteristics about the open-recursive server in a single scan event: IP and nameserver

information for each domain of interest. We discover as many IP to domain name map-

pings for each zone as possible due to query type variation (A, NS, MX, AAAA). In

Figures 5 and 6 we can see a sample of the two observed IP address discovery growth

trends that we observe with Anax’s scanning engine. Figure 5 shows that domain names

that exhibit significant network diversity for IP address present in legitimate A-type

answers (e.g., blogger.com, amazon.com) or utilize CDN networks (e.g., bestbuy.com

uses akamai.net), Anax needs more time to identify all possible IPs addresses. In this

case Anax will identify 95% of address records for these network diverse zones in 8-12

days while at the same time continue discovering new IP addresses months after the

start of scanning. In Figure 6 domain names with a more stable network profile utilize

significantly fewer IP addresses over time. In this case Anax takes less time (95% of

address records will be discovered in 2-3 days) to discover almost all of them.
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Fig. 5: IP discovery trend in Anax for

zones that use CDN networks or are net-

work diverse.
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4 Dataset Evaluation

Using the Anax infrastructure described in Section 3, we periodically made a large

number of DNS queries to a set of 300,000 ORDNSs for the 131 zones of interest.

The raw DNS collector holds the DNS data generated by Anax’s scanning engines. The

scanning points periodically synchronize their data to this server for analysis. When the

system is in on-line mode (Figure 2; step five) the data can be instantly classified as

it arrives in the raw DNS collector. Potentially, the detection engine could be placed

directly at the scanning points and classify new RRs on-the-fly.

We evaluated the system in its off-line mode since it was necessary for us to care-

fully obtain ground truth for our classification process. We used part of the captured

traffic to evaluate our detection algorithm. For training our detection system, we used

23 million DNS answers recorded between January 2009 ant the end of February 2009.

To create the testing dataset, we used 57 million DNS answers recorded between March

2009 and August 2009.

The raw DNS data gathered by Anax holds all possible observations made about

the resource records (RRs) in the received answers for all zones of interest. Our dataset

provides “evidence”—that is the RRs (“Domain Name to IP” and “Domain Name to NS

server”) returned by the ORDNS. A portion of the unique RRs present in these datasets

were manually classified to provide the ground truth for our study. At this point we

should note that Anax is able to classify A-type resource records or “Domain Name

to IP” mappings. The collection of the NS-type records (or “Domain Name to Name

Server” mappings) helped us in the manual classification process and forensic analysis

of the hand verified poisoning cases.

4.1 Dataset Labeling

We constructed our limited whitelist by selecting 23 “major” recursive DNS servers

across the US. Using a one-time probe against these open-recursive servers, we obtained

all address records for the 131 zones of interest. We hand verified that each address
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found in the returned answers was indeed part of the legitimate domain resolution. After

mapping the returned IPs to the corresponding Classless Inter-Domain Routing (CIDR)

block, we used this newly created set of CIDRs as our only CIDR based whitelist.

During our eight month scanning period, while most of the answers were deemed

legitimate, not all illegitimate answers were necessarily poisonous. DNS misconfigura-

tion is a common phenomenon, and sometimes resembles malicious behavior [39, 16].

To account for this, we created several labels for a range of responses: Legitimate Re-

sponse, CDN, Misconfiguration, NXDOMAIN rewriting, DNS Proxy, and Poisoning,

as described below:

Legitimate Response: Legitimate responses indicate a properly functioning ORDNS

server returning correct results. The resolutions and authoritative name servers for

the list of domain names of interest all point to machines in the same autonomous

system among open-recursive servers in the same geographic region, and match

prior, verified answers. Our initial whitelist is a small subset of this category.

Content Delivery Networks (CDN): Many zones use DNS to load balance and local-

ize web traffic for popular destinations. This appears where the domain’s addresses

are assigned to a known content delivery network such as Akamai or Limelight.

Network blocks operated by content delivery networks are highly diverse and it

is difficult to whitelist all their members. We consulted passive DNS databases

(e.g., [22]), to assist on labeling IPs on this category.

Misconfiguration: Some answers showed clear signs of misconfiguration. This is of-

ten seen when hosts answer as an authoritative for the root servers or common

TLDs such as .com, .net, or .org, or instead return an RFC 1918 or RFC 3330

address. These errant authoritative answers are described in [39] as misconfigura-

tion.

NXDOMAIN rewriting Services: When an IP address was returned for a query that

should elicit an NXDOMAIN response, the result was labeled as NXDOMAIN

rewriting. These results are not cases of malicious poisoning, and can be detected

when an open-recursive DNS server returns an IP address instead of NXDOMAIN

for a domain known not to exist. Generally, the resulting IP address points to an

advertising portal or a search engine.

DNS proxy: When the ORDNS always provides the same IP address for multiple zone

and query types, and at the same time we can identify it as DNS tunnel [2] or a

ToTD [31] server, we classify it as DNS proxy. Most tellingly, such resolvers ex-

hibit no IP variations, since they never consult authorities and maintain no cache.

Strictly speaking, we do not treat this as DNS poisoning, even though local net-

works may likely wish to ban the use of DNS proxies.

Poisoning: We hand-verify and label as “poisonous” any address returned by an ORDNS

that was not owned by the domain name owner, and pointed to a machine under the

control of a malicious party. To assist with this labeling, we consulted numerous

IP blacklists [30, 24, 13], do-not-route-lists [28], dynamic IP space [29] and pas-

sive DNS databases [22]. IPs in RRs that pointed to such hosts indicated malicious

poisoning of an ORDNS.
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5 Detection Model and Results
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Fig. 7: Poisoning detection flow in Anax.

The poison detection flow in Anax consists of detection modules placed in series to

reduce false positives and produce as few false negatives as possible. (As noted below,

we arranged these detection modules to place the highest false positive rate first, to

maximize the final true detection rate) Figure 7 shows the various steps of the detection

flow. RRs not in the Anax DB are forwarded to the CIDR analysis module defined

in Section 5.2. The L[0]-L[4] categories (defined in Section 5.1) represent the various

ways the CIDR analysis module may classify a new RR. The 2-Class classifier (defined

in Section 5.3) handles the unknown RRs from the CIDR analysis module (category

L[4]) and flags them as benign or poisonous, based on trained models of benign and

poisonous RRs. In the case of poisonings, Anax produces a detailed poisoning report

on the RR that caused this alert. The detection flow ends by updating the Anax DB on

the analyzed RRs. In the following sections we examine in detail the key modules of

Anax’s detection flow, namely the CIDR analysis module and Anax’s 2-class classifier.

5.1 Categories of Resource Records

In Section 4.1 we identified the type of DNS responses we anticipate to receive. Be-

fore we elaborate on the details of the CIDR analysis module and 2-Class classifier we

introduce the categories of resource records that the modules can handle. Anax groups

RRs in the following five categories in order to clearly define the detection actions that

each detection module will enforce. These five categories are:

L[0] - Whitelisted RRs: This category is comprised of address records known to be

benign, based on our small CIDR-based whitelist.

L[1] - Misconfiguration & “non-routable” IPs: This category is comprised of RRs

with IPs that should be considered as misconfigurations since they point to “non-

routable” address space. Although interesting, they are not useful for detecting

DNS poisoning and are counted as benign when calculating the final detection rates.
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L[2] - NXDomain rewriting & Proxies: This category contains two special cases of

A-type records. The first category contains address records that are meant to pro-

duce NXDOMAIN answers according to our probing protocol but did not. Ad-

dresses from such NXDOMAIN rewriting services are of no interest as poison,

and are deemed benign. The second category is composed of address records from

ORDNS acting as DNS tunneling servers. There is no interest in further analyzing

these RRs as poison.

L[3] - Poisonous RRs: This category includes address records that reside in any of

the following public lists: do-not-route or peer list [28], dynamic IP address space

(PBL) [29], hosts reported to drop malware (XBL) [30] or engage in other mali-

cious activity [24]. These RRs will cause the detection algorithm to exit while cre-

ating a poisoning alert. The reason why these records will be considered as cases

of poisoning attacks is that none of the domains present in our list of “domains

of interest” would ever internationally serve malware. Therefore, none of the IPs

present in their resource records should ever be in any of these lists.

L[4] - Unknown RRs: This category contains address records from which the CIDR

analysis module (defined in Section 5.2) can make no immediate detection decision

based on the four previous categories. Finer grained analysis is needed for these

RRs. As we will describe in Section 5.3, this can be achieved by computing a six-

dimension statistical feature vector.

5.2 CIDR Analysis Module

Address records in RRs that fall into these five categories will initially be used by

the CIDR analysis to either create a poisoning report (category L[3]), claim that the

RR is not the subject of a poisoning attack (categories L[0]-L[2]) or forward any RR

that requires more expensive, fine-grained analysis to the Anax 2-Class classifier (cat-

egory L[4]). The CIDR analysis module receives RRs, such us google.com IN

74.125.67.104, with IP addresses from the monitored zones. Its goal is to make an

immediate detection decision about the address record. Based on the categories men-

tioned in Section 5.1, any IP address within the RR will reside in one of the five cate-

gories (L[0]-L[4]).

The primary motivation behind the use of this module is to reduce the overall false

positives and to eliminate unnecessary analysis of IPs that fall into the L[0]-L[3] cat-

egories. Address records marked as L[0], L[1] and L[2] will cause the detection algo-

rithm to exit without producing a poisoning alert. Simultaneously, the detection algo-

rithm will update the Anax database. For address records that will be placed in the L[3]

category by the CIDR analysis module, a poisoning alert will be generated for the cor-

responding RR. RRs that falls into the L[4] category will be forwarded to the 2-Class

classifier, which will make the final detection decision based on statistical models from

known benign and poisonous RRs profiles.

5.3 Anax 2-Class Classifier

RRs in category L[4] that cannot be directly checked with our limited white and black

listing. Therefore, we use a 2-class K-nearest neighbors (IBK) classifier to make the
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final detection decision on them. This statistical classifier differentiates between benign

and poisonous RRs based on benign and malicious RR profiles built using passive DNS

information. Passive DNS data collection is a very common technique that gathers his-

toric DNS resolutions. We use such passive DNS data traces (pDNS) to produce six

statistical features for Anax’s 2-class classifier.

In order to compute these features, Anax requires a resource record (RR) as an

input. An RR of A-type, as we already mentioned in previous sections, is composed

of a domain name d and an IP dip. We define BGP (dip) as the set of all IPs in the

same BGP prefix of dip. Each domain name present in our list of “domains of interest”

is composed of two parts: the top level domain or TLD (e.g., .com, .org) and the second

level domain or 2LD (e.g., ebay, google). We represent every domain name d in our

list as d2ld.dtld. Using the same logic, when we query the pDNS against an IP, the

pDNS will report back to us a list of domain names that are historically linked with

this particular IP. We refer to each returned domain name from the pDNS DB as AD.

Each returned domain name can also be represented as AD = adnld.....ad2ld.adtld,

assuming that it is a nth level domain.

The set of all unique domain names returned from a passive DNS query on dip is

APDNSdip
=

⋃
k=1..m ADk, where m is the number of unique domain names (AD)

that historically can be linked with the dip in the passive DNS database [22]. Also, we

define APDNSBGP (dip) =
⋃

k=1..m ADk, where m is the number of unique domain

names (AD) that historically can be linked with any IP in the BGP prefix of dip in

the passive DNS DB. Next we define AD3ld.2ld.tld = ad3ld.ad2ld.adtld, AD2ld.tld =
ad2ld.adtld and AD2ld = ad2ld.

Now we can define the set APDNS3ld.2ld.tld
dip

=
⋃

k=1..m AD3ld.2ld.tld(k) which

include all AD3ld.2ld.tld domains (e.g., www.example.com) from all domain names in

the set APDNSdip
. We also can define the set APDNS2ld.tld

dip
=

⋃
k=1..m AD2ld.tld(k)

which include all AD2ld.tld domains (e.g., example.com) from all domain names in the

set APDNSdip
. We define as APDNS2ld

dip
=

⋃
k=1..m AD2ld(k) the set of strings

which include all AD2ld (e.g., example) from all domain names in the set APDNSdip
.

Similarly, we define the two sets APDNS2ld.tld
BGP (dip) =

⋃
k=1..m AD2ld.tld(k) and

APDNS2ld
BGP (dip) =

⋃
k=1..m AD2ld(k) that include all second level domain names

(AD2ld.tld) and all strings (AD2ld) from all domain names in the set APDNSBGP (dip)

respectively.

Finally, we define a list of popular second level domains (2LD) that belong to con-

tent delivery networks (CDN) like Akamai, CoralCDN, Limelight and Redcondor. We

refer to this list as ACDN =
⋃

k=1..n cdnk, where cdnk is a distinct fully qualified

second level domain name (e.g., akamai.net, akamaiedge.net, coralcdn.net). We now

elaborate on how we compute the six statistical features based on each newly received

resource record:

[Φ1] - Domain Name Diversity: The number of unique domains in the set APDNSdip

that historically have been mapped with the dip in the RR.

[Φ2] - 2LD Diversity: The number of unique AD2ld.tld present in the set APDNS2ld.tld
dip

and have been historically mapped with the dip in the RR.
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[Φ3] - 3LD Diversity: The number of unique AD3ld.2ld.tld present in the set in the set

APDNS3ld.2ld.tld
dip

and have been historically mapped with the IPs in dip.

[Φ4] - Relative BGP CDN Occurrence: The frequency of the AD2ld.tld that histori-

cally are present in the set APDNSBGP (dip) and at the same time the AD2ld.tld
∈

ACDN .

[Φ5] - Relative BGP d2ld.dtld Occurrence: The frequency of the d2ld.dtld in the set

APDNS2ld.tld
BGP (dip) that historically have been mapped with any IP present in the

set BGP (dip).
[Φ6] - Relative BGP d2ld String Occurrence: The frequency of the string d2ld in the

set APDNS2ld
BGP (dip) that historically have been mapped with any IP present in

the BGP (dip).

The statistical features Φ1, Φ2 and Φ3 will provide us with historic DNS information

based only on the dip in the RR. The statistical feature Φ4 will capture the participation

of commonly used CDN second level domains that historically have been mapped with

any IP in the same BGP prefix as the dip. Finally, the statistical features Φ5 and Φ6 will

capture the participation of all other domain names that point into the same BGP prefix

with the dip and at the same time match with the 2ld.tld and the 2ld of the domain d.

If the 2-Class classifier labels the IP as poisonous, a poisoning alert will be created

for the corresponding RR. Otherwise, it will be marked as benign and it will be added

into Anax DB.

5.4 Model Selection and Detection Results

We evaluate the 2-Class classifier in two modes: standalone mode and “in-line” with the

CIDR analysis module. In the standalone mode we seed the classifier with any new RRs

directly, while in the in-line mode we feed the RRs to the CIDR analysis module and

the classifier receives only RRs that belong solely to the L[4] (unknown) category. We

evaluated our modules with this process to better justify our decision of assembling the

detection flow the way we did. It is straightforward, from an efficiency-minded point of

view, that placing the CIDR module in-front of the classifier should lessen the workload

on the classifier (since IPs labeled L[0] - L[3] need no further processing). The question

we try to answer in this section is the following: will the classifier perform better in

in-line or in standalone mode?

We start by carrying out the model selection, a very common technique from the

machine learning community. Model selection is used in order to select the optimal

machine learning method for solving a given classification problem [18]. We select one

classifier for each major family of commonly used classifiers:

I. Simple Logistic Regression - SLR; a classifier for building linear logistic regres-

sion models.

II. K-nearest neighbors classifier - IBK; a “lazy” K-nearest neighbors classifier.

III. LAD Decision Tree; a classifier for generating a multi-class alternating decision

tree using the LogitBoost strategy.

IV. Support Vector Machine - SVM; a SVM based classifier with radial basis function

kernel.
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CIDR and Classifier Classifier only

Families TP% / FP% / Preci. TP% / FP% / Preci.

NBayes (Poi) 94.1% / 63.4% / 15.1% 95.0% / 28.9% / 55.4%

IBK (Poi) 91.9% / 0.6% / 94.6% 96.4% / 2.7% / 93.1%

SVM (Poi) 57.0% / 0.9% / 88.6% 81.9% / 5.9% / 83.9%

MLP (Poi) 34.4% / 0.8% / 83.8% 54.2% / 3.7% / 84.8%

LAD (Poi) 73.9% / 3.6% / 70.8% 81.5% / 7.4% / 80.7%

Table 2: Model Selection for Anax 2-Class Classifier in two modes; standalone and “in-line”

with the CIDR analysis module.

V. Neural Network - MLP; a classifier that uses back-propagation to classify in-

stances.

We used several different classifiers, and found that with a 2-Class K-nearest neigh-

bors IBK classifier we obtain the best detection results with FPrate = 0.6% and

TPrate = 91.9%. This is not an unusual phenomenon in machine learning, that a sim-

ple classifier like the IBK performs significantly better than more sophisticated and

complex classification methods like neural networks [18, 40]. The Receiver Operating

Characteristic (ROC) curves for the poison class while using the IBK classifier can be

seen in Figure 8.

The reader should note that the FPrate = 0.6% and TPrate = 91.9% are not packet

rates. ROC analysis usually works on rates of detection over network traces, but doing

so would unfairly bias the classification results in Anax’s favor because the vast ma-

jority of the packets are benign. By the definition of the false positive rate (incorrectly

classified negatives over total negatives), the number of negatives (or benign packets)

is significantly higher than the very sporadic cases of poisoning. Therefore, we decided

to instead conservatively calculate the FPrate and the ROC curve based on the unique

RRs. In this case, the 0.6% of false positive rate means that for every 1000 unique be-

nign RRs Anax observes for a zone, the poisoning detection system will misclassify six

of them as poisonous. To further place the FPrate results into real world context we can

look into the domain name “ebay.com”, where Anax classified 137 unique RRs over the

period of eight months, which means that over an eight month period of time it would

misclassify less than a single RR. This indicates that Anax is able to produce low false

positive rates due not to the relative volume of the negatives, but due to the accuracy of

the 2-Class classifier.

The goal of the 2-Class classifier is to lower the FPrate inherent to the CIDR anal-

ysis module due to the limitations of white and black lists. At the same time, we need to

keep TPrate as high as possible. We observe that when the modules are “in-line”, both

the FPrate and TPrate are typically better. The only exception is the case of the Naive

Bayes (NBayes) classifier where the TPrate decreases in the “in-line” mode. Unfortu-

nately, NBayes cannot be considered as a candidate for our modeling due to the very

high FPrate that exhibits in both modes. The “in-line” mode is typically better since
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Fig. 8: The ROC curve for poisoning detection in Anax.

the majority of RRs escaping the CIDR analysis module will have the following two

characteristics.

First, they are not commonly seen in RRs for the monitored zones. Our whitelist will

have very small visibility of the whitelisted address space because we do not risk re-

probing and re-verifying correct answers from a small set of trusted recursive servers. In

general, maintaining a whitelist has proven to be a very inefficient task. Instead, we use

the classifier to leverage the task of identifying other whitelisted RRs. This is possible

because the classification features we used to compute the statistical vectors from the

passive DNS database will place these uncommon legitimate RRs closer to legitimate

trained vectors due to the history of the given IP (present in the newly observed RR)

within the passive DNS database.

The second category of RRs that will escape the CIDR analysis module will in-

evitably contain IPs that belong to CDNs and mainly serve news sites. CDNs tend to

fluctuate the network addresses that they use to ensure better quality of service to the

end-user of the domain. Static whitelisting cannot keep up with these frequently chang-

ing addresses so the CIDR analysis module will not be able to whitelist all CDN ad-

dresses. Anax successfully addresses this issue in the 2-Class classification module. IPs

from CDN networks produce vectors that are very distinct. Such IPs tend to be mapped

to a large number of distinct domain names historically. This list of domain names also

shows very small diversity in the number of unique 2LDs and large participation of

typical domain names (2LDs) directly correlated with CDNs (e.g., akamai.net, cloud-

front.net, llnwd.net). A portion of some CDN related vectors will always be present in

the training dataset and the classifier will have no problem correctly classifying similar

statistical patterns in the testing dataset.

Anax utilizes passive DNS data for computing its statistical features, therefore it

is sensitive to the relative passive DNS window (how long are retained passive DNS

data) and how the passive DNS data are aggregated. Operators should collect passive

DNS data below the resolver in order to protect their database against out-of-Bailiwick
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RRs. Furthermore, the utilization of past-CDN IP address space for poisoning could

be a significant evasion threat for Anax if the passive DNS window is more than a

few weeks. If the window is on the order of several months, then any past-CDN IP

address space will still contain past-CDN signal, (considered benign by Anax). This

increases the difficulty in identifying poisoning attempts with IPs originating from such

addresses.

6 Conclusion

Recently discovered flaws in the DNS protocol require new, innovative techniques to

detect poisoning. We have suggested and explored a new area for such research: the

detection of DNS poisoning using network observations. We built a system, Anax, that

aims to examine the nature of cache poisoning attacks. Anax is able to detect cache

poisoning locally and in a fully automated manner.

Leveraging the fact that DNS poisoning is an inherently localized attack, Anax pro-

vides useful insights into attacks, based largely on limited whitelisting and statistical IP

and domain name metrics. Anax’s detection engine shows that these heuristics can be

refined, and placed in order to yield a low (RR-based) FPrate (0.6%), high (RR-based)

TPrate (91.9%). Our work has focused on “zones of interest” that are historically tar-

gets of phishing attacks.

Anax relies on a fundamental observation about DNS: benign DNS records from

major zones generally direct users to a known, usually stable set of NS-type and

A-type records. Poisonings on the other hand generally point victims to new IP ad-

dresses. Anax utilizes detection heuristics based on historic passive DNS observations

and is able to accurately model benign and malicious RRs. The eight month, real world

evaluation shows that Anax is an effective and efficient real-time poisoning detection

system.
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