
IoTFinder: Efficient Large-Scale Identification of IoT Devices
via Passive DNS Traffic Analysis

Roberto Perdisci∗†‡, Thomas Papastergiou∗‡, Omar Alrawi‡ and Manos Antonakakis‡
‡Georgia Institute of Technology, †University of Georgia

{perdisci,tpapastergiou,alrawi,manos}@gatech.edu

Abstract—Being able to enumerate potentially vulnerable
IoT devices across the Internet is important, because it allows
for assessing global Internet risks and enables network oper-
ators to check the hygiene of their own networks. To this end,
in this paper we propose IoTFinder, a system for efficient,
large-scale passive identification of IoT devices. Specifically,
we leverage distributed passive DNS data collection, and
develop a machine learning-based system that aims to accu-
rately identify a large variety of IoT devices based solely on
their DNS fingerprints. Our system is independent of whether
the devices reside behind a NAT or other middleboxes, or
whether they are assigned an IPv4 or IPv6 address.

We design IoTFinder as a multi-label classifier, and
evaluate its accuracy in several different settings, including
computing detection results over a third-party IoT traffic
dataset and DNS traffic collected at a US-based ISP hosting
more than 40 million clients. The experimental results show
that our approach allows for accurately detecting many
diverse IoT devices, even when they are hosted behind a NAT
and their traffic is “mixed” with traffic generated by other
IoT and non-IoT devices hosted in the same local network.

Index Terms—IoT Security, Traffic Modeling, Passive DNS

1. Introduction
The number of IoT devices connected to the Internet, such
as cameras, voice-activated assistants, network-attached
storage devices, smart appliances, etc., has been growing
at an increasingly accelerating pace [1], [2]. Unfortunately,
partly due to market forces that push down the cost of such
devices, even well-known elementary security mechanism
are often neglected by IoT device developers and vendors.
This has caused a new security crisis of sorts, which has
been highlighted by recent major Internet-wide security
incidents originating from massive numbers of compro-
mised IoT devices [3]–[5].

It is therefore important to enumerate potentially vul-
nerable IoT devices across the Internet, as a way to esti-
mate global Internet risks and provide a way for network
operators to assess the hygiene of their own networks. For
instance, systems such as Censys [6], [7] and Shodan [8]
perform periodic scans of the entire IPv4 space, using
active probing techniques to identify network services
reachable from the public Internet. These services leverage
banner grabbing and other fingerprinting approaches to
identify and enumerate the type of devices that expose
those network services, which includes identifying ex-
posed IoT devices. This allows organizations to assess
what others can learn about their networks, thus gaining
a better understanding of the attack surface they expose.

∗ The first two authors contributed equally to this work.

Unfortunately, active probing is unable to identify IoT
devices that are hosted behind some middleboxes, such
as NATs or firewalls. At the same time, mapping these
“hidden” IoT devices is important. For example, large
Internet service providers (ISPs) may want to build a map
of where specific IoT devices are located within their
networks and help the hosting clients secure those devices,
especially after new IoT vulnerabilities are discovered.

Besides the barriers imposed by some midleboxes,
probing-based IoT device discovery is also hindered by
the advent of IPv6, which has made exhaustively scanning
the entire IP space impractical. While some approaches
have been suggested to mitigate this issue, enumerating
all possible active IPv6 devices on the Internet, including
discovering IPv6 IoT devices, remains a challenge [9],
[10]. At the same time, the role of NATs may fade
away in IPv6, and there is evidence that devices taking
public IPv6 addresses by default may be unintentionally
exposed to the Internet with no filtering [9], which may
in turn suddenly make previously unreachable IoT devices
remotely exploitable.

To address the challenges outlined above, in this paper
we propose IoTFinder, a system for efficient, large-
scale passive identification of IoT devices. Specifically,
we leverage distributed passive DNS data collection, and
develop a machine learning-based system that aims to ac-
curately identify a large variety of IoT devices, with gran-
ularity up to device models. Furthermore, IoTFinder is
independent of whether the devices reside behind a NAT
(or other middleboxes, such as firewalls) or are assigned
an IPv4 or IPv6 address. It is also worth noting that,
while not readily available to everyone, large-scale DNS
data collected from globally distributed resolvers has been
used in research as well as in many security applications in
both the industry and academia [11]–[17]. There also exist
companies that focus on collecting, aggregating and offer-
ing DNS data as one of their main products (e.g, [18]).

We design IoTFinder to meet the following desir-
able properties:

• Fully-automated fingerprint learning: We aim to
automatically learn accurate DNS-based statistical
fingerprints for IoT device identification, includ-
ing automatically learning an optimal detection
threshold that aims to maximize true positives
while limiting false positives below a configurable
tolerable rate.

• One fingerprint per IoT device: We aim to learn
individual binary classification fingerprints, one
per each IoT device. Namely, given a DNS traffic
trace D, a fingerprint fk learned from device Ik
can be viewed as a binary classifier that reveals

474

2020 IEEE European Symposium on Security and Privacy (EuroS&P)

© 2020, Roberto Perdisci. Under license to IEEE.
DOI 10.1109/EuroSP48549.2020.00037

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

whether device Ik generated (or contributed to)
the DNS activities seen in D. Unlike a multi-
class classification approach, these individual fin-
gerprints allow us to easily perform multi-label
classification, enabling the identification of mul-
tiple different IoT devices that may be co-hosted
behind the same (NATed) IP address.

• Accurately identifying IoT devices in mixed net-
work traffic: Often, multiple IoT devices are co-
hosted behind the same WiFi access point/NAT
along with many other general-purpose (non-IoT)
devices, including Windows PCs, Mac OS and
Linux machines, tablets, smartphones, etc. Our
DNS-based statistical fingerprints aim to accu-
rately identify what IoT devices are hosted behind
a given client IP address, regardless of whether
their traffic is seen from outside their local net-
work as being mixed-in with other IoT or non-IoT
traffic.

• Explainable results: We aim to avoid complex
models whose results are difficult to interpret.
Instead, we favor statistical IoT device fingerprints
that are easily interpretable. This allows us not
only to understand the learned IoT models them-
selves, but also to analyze the fingerprint matching
results and investigate the causes of possible false
positives and negatives.

• Efficient matching: Because our objective is to
enable global-scale identification of IoT devices,
we aim to develop our fingerprint matching algo-
rithm to be highly efficient. For instance, we aim
to match tens of different IoT device fingerprints
against DNS traffic generated by tens of millions
of clients in a matter of minutes.

Our system is generic, in that it is able to automatically
learn detailed DNS fingerprints for IoT devices based on
samples of real-world device-generated traffic without re-
lying on manually crafted rules or constraints. Specifically,
we automatically model the behavior of more than 50
IoT devices from a variety of manufacturers. Furthermore,
we develop a method for collecting negative ground truth
(i.e., labeled DNS traffic from non-IoT devices) at scale,
allowing us to quantify and characterize possible false
positives over large numbers of real-world non-IoT de-
vices, including Windows PCs, Mac OS laptops, iPhones,
iPads, Android mobile devices, etc.

After systematically quantifying IoTFinder’s true
and false positives and providing a method for automati-
cally tuning the detection threshold of each DNS finger-
print, we match our IoT behavior models over very large
DNS traffic datasets collected from a major ISP network
with tens of millions of clients, allowing us to estimate
the population of these IoT devices across large sections
of the Internet.

In summary, we make the following contributions:

• We propose a novel system called IoTFinder
for efficient large-scale detection of in-the-wild
IoT devices. IoTFinder is designed to auto-
matically learn statistical DNS traffic fingerprints
from real IoT devices, and to efficiently match the
derived fingerprints over very large volumes of

DNS traffic collected from many geographically
diverse network locations.

• Overall, IoTFinder works as a multi-label clas-
sifier that is able to detect IoT devices even when
they are hosted behind a NAT and their traffic is
“mixed” with traffic generated by other IoT and
non-IoT devices hosted in the same local network.

• To evaluate the accuracy of our statistical mod-
els, we perform a detailed evaluation of our IoT
fingerprints in several different settings, including
computing detection results over a third-party IoT
traffic dataset. These detailed experiments allow
us to highlight the advantages of the proposed ap-
proach as well as to point out possible limitations.

• We also apply our IoT fingerprints over DNS
traffic collected at a US-based ISP hosting more
than 40 million clients, to assess our system’s per-
formance. Our results show that we can efficiently
process one entire day of ISP-level DNS traffic and
test all our IoT fingerprints in a limited amount of
time (slightly more than one hour).

2. Intuitions and Approach Overview
In this section, we provide the intuitions behind our ap-
proach for large-scale passive detection of IoT devices
based on DNS traffic analysis. We first briefly describe
how we gather ground truth data to learn our IoT detection
models (Section 4.1), so that we can provide context for
the motivating examples discussed in Section 2.2. Then,
we provide an overview of how our system learns to
recognize the DNS-behavior of IoT devices (Section 2.3),
by drawing an analogy to document retrieval systems.

2.1. IoT Data Gathering
To enable the training and testing of our model, we have
established a large IoT lab consisting of multiple voice
assistants, cameras, smart speaker, IoT hubs, lights, TVs,
game consoles, smart appliences, etc. We continuously
record all traffic sent and received by each device, as
depicted in Figure 1. The devices are deployed in a lab
with human presence, in which cameras record movement,
voice-based assistants listen to discussions and are from
time to time used/activated by the people in the lab,
thermostats sense changes in the room temperature, appli-
ances (e.g., a Roomba vacuum cleaner) are occasionally
used (e.g, to clean the lab floor), etc. In this paper, we
focus specifically on the DNS traffic generated by the IoT
devices. The IoT DNS dataset we use in our experiments
spans approximately 1.5 months, and includes 53 active
IoT devices from many different vendors (see Section 4.1
for more details).

2.2. Motivating Examples
Figure 2 shows an example of how different devices tend
to query different (potentially overlapping) sets of domain
names with different frequency, in a 24 hours period,
based on data we collected as described in Section 4.1.1
(the figure only shows the DNS behavior of six devices,
due to space constraints).

Based on the DNS activity generated by IoT devices,
one may be tempted to build the following simplistic
detection model (a somewhat similar model was proposed

475

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Figure 1: IoT traffic collection infrastructure.

in [19]): given the set of domains queried by a specific
IoT device and a passive DNS trace collected from a
third-party network, if a DNS client (e.g., identified by
an anonymous ID or IP address) in the trace queries
any of the domains in the IoT device domains set, la-
bel that client’s IP (or anonymous ID) as hosting the
IoT device behind it. Unfortunately, this naive model is
prone to numerous false positives. For instance, device
#5 (Philips HUE hub) in Figure 2 queries, among others,
www2.meethue.com, which is a publicly accessible web-
site containing product information. Other devices (not
shown due to space constraints) query popular domains
such as www.google.com, pool.ntp.org, etc. Previous
work [19] has proposed to deal with such cases by probing
the domains to determine whether they are “human fac-
ing” (i.e., whether they contain human-accessible content),
thus filtering out domains such as www2.meethue.com to
avoid false positives. However, the frequency with which
www2.meethue.com is queried by device #5 is hardly
characteristic of a human visiting the meethue.com web-
site. Therefore, discarding such information would neglect
the potentially discriminative classification power that
comes with it. Similarly, the approach proposed in [19]
would discard fireoscaptiveportal.com from consideration
in the detection of device #57 (Amazon Echo Dot), be-
cause the domain does not contain a string representing
either the vendor name or the device model name, even
though that domain is queried with high frequency. For the
same reasons, [19] would discard both domains queried
by device #33 (Belkin WeMo Crockpot), thus preventing
its correct identification. Furthermore, using single domain
names for detection can cause significant confusion among
devices that share some DNS behavior (e.g., different
device models from the same vendor), which is another
limitation affecting the system proposed in [19].

At a high level, Figure 2 provides the intuition that,
unlike single domains, the combination of domains and
related frequency of DNS queries issued by different IoT
devices are often quite specific. This observation may
indeed allow us to build a set of discriminative behavioral
fingerprints that can identify different IoT device models
and are unlikely to trigger a significant number of false
positives, when matched against a generic client’s DNS
behavior. We therefore leverage the above intuition to
build a system that can automatically learn accurate DNS-
based IoT fingerprints, without the need of making strong
assumptions on the format of the domains a device may
query or of manaully deriving filtering heuristics to reduce
false positives (see Section 3 for details).

Figure 2: Timeline of IoT domain queries over 24 hours. The number on
the left of each domain name string is a unique IoT lab device identifier
(5: Philips HUE hub; 6: Insteon hub; 7: Sono speaker; 33: Belkin WeMo
Crockpot; 58: Nest thermostat; 57: Amazon Echo Dot (3rd Gen)). Each
horizontal line represents a domain name queried by an IoT lab device,
and each dot represents the time of a DNS query. Vertical dashed lines
mark a one hour window.

2.3. Approach Overview
To build efficient DNS-based IoT device fingerprints, we
first draw an analogy between IoT device detection and
document retrieval [20]. Let Ci be a generic device (IoT or
not), represented in practice by its IP (v4 or v6) address.
Also, let dij be a domain name queried by device Ci,
and fij be the occurrence frequency of dij in Ci’s DNS
traffic. Namely, given a time interval Δt, fij expresses
the number of DNS queries to dij issued by Ci. We can
think about Ci = {(dij , fij)}j as a document containing
a set of terms dij , each appearing in the document with
their own respective term frequency fij .

Similarly, let Qk be an IoT device, qkj be a domain
name queried by Qk and fkj be the frequency with
which qkj is queried by Qk. Continuing the analogy with
document retrieval, we can think of Qk = {(qkj , fkj)}j
as search query terms, and the task of identifying IoT
devices as retrieving all documents Ci that are similar to
the search query Qk, with relevance ranked according to
their similarity scores.

Following the above analogy, to compute the similarity
between the DNS behavior of an IoT device Qk and that of
a generic device Ci we can first translate each Qk and Ci
into their respective TF-IDF (i.e., term frequency - inverse
document frequency) feature vector representations [20],
and then measure the similarity (e.g., the cosine similarity)
between the resulting feature vectors.

An overview of the approach used by our
IoTFinder system for learning and matching TF-
IDF feature vectors for IoT devices is shown in Figure 3,
which we will describe in detail in Section 3.

Challenges: There are some important challenges related
to the above analogy between our IoT device modeling
and document retrieval. First, our design goal of being

476

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Learning and Matching DNS-based IoT fingerprints.

able to match an IoT device whether or not it is hosted
behind a NAT along with several other devices does not
immediately fit the document retrieval scenario. One may
think that this could be analogous to matching a query
against a document containing multiple topics. However,
in the basic document retrieval case, documents that focus
on one single topic that is similar to the query may tend to
be favored (ranked higher), compared to documents with
multiple topics. On the contrary, we do not wish to penal-
ize matching an IoT device behind a NAT simply because
it is hosted along other (IoT and non-IoT) devices behind
the same IP address. Furthermore, some routers/NATs act
as DNS forwarders with their own DNS cache policies.
This may cause a discrepancy between the occurrence
frequency of domain names queried by a device Ci and
that learned by the reference model for a target IoT device
Qk, even if Ci and Qk do represent the DNS behavior of
(two instances of) the same IoT device. This discrepancy
could be further aggravated by possible packet loss at the
DNS traffic collection point, and device usage patterns
(e.g., some devices, such as smart appliances, may be
turned on and off). Sections 3.1 and 3.2 explain how
we adapt our IoT device detection fingerprints to address
the challenges outlined above while maintaining the high-
level analogy with document retrieval.

3. System Details
We now provide a detailed description of IoTFinder’s
fingerprint learning and matching processes summarized
in Figure 3.

3.1. Learning DNS-based IoT fingerprints
Given a set of IoT traffic traces collected over a period of
time Tl (e.g., several days) from I different IoT devices,
we first extract the set of domain names queried by each
device in our IoT lab (see Section 4.1). To model the DNS
behavior of an IoT device, we proceed as follows. Let
Qk = {qkj}mk

j=1 represent an IoT device that, during Tl,
queries mk distinct domain names, qkj . First we divide the
observation time Tl into non-overlapping time windows of
length w (for simplicity, we will assume Tl is a multiple
of w). Given a domain qkj , for each of the Nw = Tl

w time
windows, we determine whether qkj was queried or not
during that window. Now, assume we observed at least one
DNS query to qkj in nqkj

out of Nw time windows. We
then say that device Qk queries qkj with probability pkj =
nqkj

Nw
. In other words, we discretize time, and then compute

the probability that Qk will query qkj at least once in any
time window of length w. This results into a statistical

fingerprint Pk = {(qkj , pkj)}mk
j=1 for each IoT device Qk,

which we will map to term frequency estimates at test
time. The mapping between query probabilities and term
frequencies will depend on the length of the window of
traffic considered at test time, as explained in Section 3.2.

The time discretization process explained above allows
us to compensate for possible short-term variations in the
query frequency among IoT devices of the same vendor
and model. For example, assume we have two identical
IoT devices, Ia and Ib, and that Ia is deployed behind a
caching DNS forwarder (e.g., a NAT that acts as such),
whereas Ib is connected to an ISP network either directly
or through a non-caching middlebox device. If we observe
the DNS traffic from the ISP’s DNS resolvers (before their
own DNS cache), we may end up measuring different
query frequencies from Ia and Ib, due to different DNS
caching behavior implemented by the middlebox in front
of the two devices. By setting the length of window w
to be larger than the time-to-live (TTL) of DNS resource
records (e.g., A and AAAA records) for domains queried
by Ia and Ib, we effectively approximate the behavior
of a DNS cache that acts equally on both devices. This
has a “normalizing” effect that allows for a more accurate
IoT fingerprint matching. We discuss how to chose an
appropriate value of w in Section 4 (see also Figure 6).

As a second learning step, we compute the inverse
document frequency (IDF), which essentially estimates the
inverse “popularity” of each IoT-queried domain across
global DNS traces. More formally, let Q = {qi}mi=1 be the
set of all distinct domain names queried by any of the IoT
devices represented in our IoT lab dataset; namely, Q =⋃
k{qkj}mk

j=1. Also, let Tp be a given observation period
within which passive DNS traces are collected (e.g., one or
more days), Nc(qi) be the number of clients that query an
IoT domain qi ∈ Q during Tp, and Nc be the total number
of clients that query at least one IoT domain in Q during
Tp. We define IDF (qi) = log(1+ Nc

Nc(qi)+1). That is, the

less common a domain qi is among all clients that have
a chance to match an IoT device, the higher its inverse
document frequency (i.e., the higher its specificity).

In practice, we first filter out from our modeling
those domain names that are known to have a very high
popularity, such as the top 100 domains according to
Alexa.com. This is akin to filtering out stop words,
such as “the”, “a”, etc., in the document retrieval analogy.
More precisely, given a top domain d to be filtered (e.g.,
google.com), we filter out d and www.d. This filtering
serves two purposes: (i) decreasing the number of clients
Ci to be considered for matching at test time, thus making
fingerprint matching more efficient; and (ii) decreasing

477

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

the probability of triggering false positives, given that
such highly popular domains are queried by most non-
IoT devices and thus may contribute to spurious matches.

In addition to learning a model of the DNS traffic
generated by each IoT device, as explained above, we also
automatically learn the detection threshold that will allow
us to identify specific IoT devices over never-before-seen
passive DNS traces with a maximum tolerable fraction φ
of false positives. We will explain the threshold learning
process in Section 3.3, after explaining how fingerprint
matching works.

At the end of the learning process, we obtain a
statistical fingerprint for each IoT device. An IoT DNS
fingerprint will store the following information: (a) the
IoT domain query probabilities, Pk = {(qkj , pkj)}mk

j=1,
for IoT device Qk; (b) the value of the time window w
used to compute Pk; (c) the IDF value for each domain,
{IDF (qkj)}mk

j=1; and (d) the detection threshold, θk, com-
puted based on the maximum tolerable false positive rate
per device, φ.

3.2. Matching DNS-based IoT fingerprints
We now explain how the IoT device fingerprints can be
matched against future passive DNS traces. Let Pk =
{(qkj , pkj)}mk

j=1 be the statistical fingerprint for IoT device
Qk, derived as explained in Section 3.1. Also, let Tt be a
time window in which DNS traffic is passively observed
(e.g., one day), and Ci be a client whose DNS queries
are included in the DNS traffic. Our goal is to compute a
similarity score, ski, between fingerprint Pk and the DNS
behavior of Ci.

To leverage a TF-IDF vector representation, as ex-
plained in Section 2.3, we need to compute a term fre-
quency vector for each IoT device. To do so, we map the
query probabilities in Pk to the observation period Tt. To
this end, we first compute the number of time windows
Nt =

⌈
Tt

w

⌉
, where w is the same time window parameter

used in learning Pk. Then, we set fkj = pkj ∗ Nt, and
the TF vector Vk = {(qkj , fkj)}mk

j=1. Namely, fkj is the
expected number of time windows in which IoT device k
would query domain qkj during Tt. Finally, we multiply
fkj by the previously learned IDF (see Section 3.1) of
the respective domain qkj , and obtain the corresponding
TF-IDF feature value ψkj = fkj · IDF (qkj). We then use
Ψk = {(qkj , ψkj)}mk

j=1 to represent the TF-IDF vector for
IoT device Qk over time Tt.

We now need to compute the TF-IDF vector for a
client Ci. Let us assume that Ci queries a set of ni distinct
domain names dij with occurrence frequency fij during
the observation period Tt. Namely, Ci = {(dij , fij)}ni

j=1,
where fij is computed as before by counting the number
of time windows of length w in which a query to dij was
observed. To compute the similarity between an IoT TF-
IDF vector Ψk and the behavior of a client Ci, we then
proceed as follows. First, we “project” Ci into the space of
mk domains in Ψk. In practice, we compute a new vector
C ′i = {(qkl, f ′kl)}mk

l=1, where the set of domains {qkl}mk

l=1 is
the same set of mk domains represented in the IoT device
vector Ψk. We then set f

′
kl = fij if qkl = dij . If no domain

name dij matches qkl, we set f ′kl = 0. In other words,
we take all domains queried by client Ci that were also
queried by IoT device Qk, and set their TF values to reflect

the frequency with which Ci queried them during time Tt.
If a domain queried by IoT device Qk was not observed
in Ci’s behavior, we set its frequency to zero. Finally, we
compute the TF-IDF vector Γi = {(qkl, γkl)}mk

l=1, where
γkl = f ′kl · IDF (qkl).

This “projection” of Ci’s behavior onto Qk’s domain
names space allows us to achieve one of the main goals
of our work. Namely, it allows us to avoid penalizing the
similarity score between Qk and Ci simply because Ci
represents the DNS traffic of multiple devices (possibly
including several other IoT and non-IoT devices) that
coexist behind the same IP address (e.g., behind a NAT).

Consequently, we now have that Ψk and Γi span the
same vector space. Specifically, let ψ = [ψkj] and γ =
[γkj] be two vectors containing the TF-IDF features of
Ψk and Γi, respectively. We compute the matching score
as s(Ψk,Γi) =

ψ·γ
||ψ||·||γ|| (i.e., we compute their cosine

similarity). Then, if s(Ψk,Γi) � θk, we say that the DNS
behavior of client Ci matches that of IoT device Qk. Here,
θk is a threshold that is automatically computed to limit
the number of false positives to a predefined maximum φ.

3.3. Learning Device Detection Thresholds
To learn each device-specific detection threshold, θk, we
proceed as follows. First, we collect a large dataset D of
previously unseen (i.e., not seen during training) labeled
passive DNS traces, as explained in Section 4.1.3. In
practice, D provides us with traffic traces from a large
set (e.g., tens of thousands) of non-IoT devices, which
form our negative ground truth. Then, we take the DNS
behavior of each client Ci in D, and match it against
each of our previously learned IoT device fingerprints.
As explained in Section 3.2, this allows us to compute
the cosine similarly, s(Ψk,Γi), between each fingerprint
and every non-IoT device in D. Using this, we can also
compute how the false positives vary by tuning the de-
tection threshold θk. Similarly, we consider previously
unseen DNS traffic generated by IoT device Qk, which
we then can use to compute the true positive rate of each
IoT device fingerprint Ψk, as a function of the detection
threshold θk.

Given a maximum tolerable false positive rate φ, our
goal is to find a value for each detection threshold θk
so to meet the two following requirements: (1) finger-
print Ψk generates a false positive rate Fk � φ, when
matched against future DNS traces; and (2) maximize the
true positive rate while keeping Fk � φ. To meet both
constraints at the same time, we devised the heuristic
approach described below.

First, we compute the ROC curve (i.e., the trade-off
between true and false positives as the detection threshold
varies) by matching fingerprint Ψk over datasets D and
device Qk. Figure 4 shows a portion of an example ROC
curve, to make our explanation easier to follow. Notice
that in reality the ROC curve is not continuous. Instead,
the curve is built in practice as a linear interpolation
between all possible operating points, namely the values
of true and false positives given by each possible detection
threshold.

Given the ROC curve, we first find the operating point
on the curve that corresponds to a false positive rate
f = φ. Notice that, as shown in Figure 4, such a point

478

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Example of (partial) ROC curve with linear interpolation

Figure 5: Linear interpolation of FPR changes as a function of the
threshold

may not actually exist, but can be estimated via linear
interpolation. Once f is computed, we can derive the
detection threshold, tF , related to the corresponding point
on the ROC curve. The example in Figure 5 is derived
from the (partial) ROC curve in Figure 4, and shows the
relationship between the detection threshold and the false
positive rate. Again, we can estimate the threshold tF
corresponding to f via interpolation.

We may then expect that setting θk = tF would
conclude our search for a detection threshold that meets
the two requirements stated earlier. However, we should
notice that there is uncertainty regarding how fast the false
positives may actually rise between points A and B. In
other words, in practice the false positive rate may grow
faster than linearly between A and B, when fingerprint
Ψk is tested on future data. Therefore, we prefer to
conservatively set the threshold somewhat above tF , to
give ourselves some margin. To this end, we proceed as
follows: we first consider the empirically computed points
A and F as in Figure 4, and map them to the respective
threshold tA and tF , as in Figure 5. We then take the
middle point, θk = (tA+ tF)/2, and consider a device as
detected if the similarity s(Ψk,Γi) > θk. Notice that a low
value of θk indicates that the device is somewhat “easier”
to detect, in that a low similarity scores threshold would
be sufficient to generate a low false positive rate. On the
other hand, a high value of θk (e.g., close to θk = 1)
would indicate that the the device fingerprint for device
k must match almost perfectly, for it to have a low false
positive rate.

In practice, we also add the constraint that θk � θk,
and heuristically set θk = 0.5 to make sure we never
match fingerprints with a similarity score that is too low.

3.4. IoT Fingerprints Deployment
Now that we have described in detail how we can learn
and match a fingerprint for each single IoT device, we
further discuss how these statistical fingerprints can be
used to enumerate IoT devices in the wild. First, it is
worth remembering that we are interested in passively
detecting IoT devices behind a NAT, even when they are
co-located with a large number of other IoT devices and
general purpose, non-IoT devices. To this end, let i be an
in-the-wild DNS client’s IP address (e.g., the NAT’s public
IP address), and Di be the DNS traffic generated by i. To
determine what IoT devices are hosted behind i, we test
each IoT fingerprint we previously learned over Di, and
report the confidence for fingerprint match. Formally, for
each device k we check whether ski = s(Ψk,Γi) > θk,
and if so report that device k matched client i with
confidence ski. In other words, we use a multi-label clas-
sification approach, and report all devices that match with
a similarity above their respective detection thresholds.

As our main goal is to enable efficient large-scale
IoT device identification, even just considering one day
of DNS traffic, the number N of distinct client IPs in
Di can be quite large (in the tens of millions, for our
experiments), and yield a huge overall volume of DNS
queries (e.g., tens of billions of queries per day). Also,
considering the large number M of distinct IoT devices in
our lab, computing all M TF-IDF vectors and performing
all N ×M fingerprint matches efficiently on a daily basis
is highly challenging. To solve this problem, we imple-
mented our feature vectors computation and fingerprint
matching in a large Apache Spark cluster, bringing the
N×M fingerprint match compute time down to less than
one hour for each day of real-world DNS traffic from a
large ISP (see details in Section 4).

4. Evaluation
In this section, we evaluate IoTFinder’s performance.

4.1. Data Collection
Our experiments are performed using the datasets de-
scribed later in this section. For brevity, we will use
acronyms to refer to the different datasets, as defined be-
low. Datasets IoTDNS, PDNS, and LDNS contain data col-
lected daily, from the respective sources, between August
2 and September 22 2019, whereas the TPIoTDNS third-
party dataset contains data collected between October 4
and October 13, 2019.

4.1.1. IoT Lab Traces Dataset (IoTDNS)
IoTFinder aims to automatically learn a statistical be-
havior fingerprint for each IoT device. To enable learning,
we collect ground truth DNS traffic traces produced by
real-world IoT devices in a realistic deployment environ-
ment. To this end, we have built an IoT lab consisting of
a large number of devices, which include multiple smart
plugs, cameras, voice-based home assistants, smart TVs,
streaming boxes, IoT hubs, thermostats, gaming stations,
smart house appliances, a smart irrigation system, etc. In
some cases, such as for deploying the Nest thermostat,
we went to the extent of simulating the presence of an
AC/Furnace system by connecting the thermostat to a
set of 24V AC relays, to simulate the presence of a

479

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

real cooling/heating system without actually connecting
the thermostat to a real load (the thermostat could not
otherwise be correctly setup).

IoTDNS contains DNS traffic generated by 53 dif-
ferent active IoT devices, which are listed on the x axis
of Figure 7. Notice that some devices have been incre-
mentally added to the lab, compared to the beginning of
our data collection period (at the beginning of the data
collection period we had 10 fewer active devices). Also,
due to operational issues (e.g., temporarily unplugging and
moving devices, or other lab reconfiguration issues), some
devices may not be active on some specific days. Days of
inactivity are removed from our experiments only for the
“missing” devices. In other words, all our evaluations for
a given IoT device model are relative to days in which
that IoT device was actually active. To determine activity,
we use conservative heuristics. Specifically, if a device did
not generate any DNS, TCP SYN, or more than three non-
DNS UDP packets, we consider the device to be inactive
(the low threshold for non-DNS UDP packets is to remove
spurious packets related to DHCP that may be present
even if the device is dormant or malfunctioning).

The devices were deployed in a lab with human
presence, in which cameras record movement, voice-
based assistants listen to discussions and are from time to
time used/activated by the people in the lab, thermostats
sense changes in the room temperature, appliances (e.g.,
a Roomba vacuum cleaner) are occasionally used (e.g, to
clean the lab floor), etc. In this environment, all Internet-
bound network traffic generated by the IoT devices is
continuously captured, as shown in Figure 1. We use the
data captured in the lab (along with other data sources,
as explained later) to train and test our statistical IoT
fingerprints. We plan to share the network traces collected
from our IoT lab with the research community.

4.1.2. Passive DNS Traces (PDNS)
We have obtained access to anonymized passive DNS
traces from a large Internet service provider (ISP) based
in the US. DNS traces are passively collected from a
distributed network of local DNS resolvers operated by the
ISP, enabling visibility into domain name queries issued
daily by more than 40 million Internet-connected devices
(including IoT devices) scattered across geographically
diverse US locations. We use this passive DNS data for
two main purposes: computing the frequency with which
domain names queried by IoT devices are queried by
generic devices in the wild (see IDF computation in Sec-
tion 3.1), and estimating the population of each IoT device
for which we learn a statistical fingerprint (Section 4.8).

4.1.3. Labeled DNS Traces (LDNS)
We have also gained access to the network traffic of a
large university campus based in the US, which we use
to collect labeled passive DNS traces. Specifically, we
use deep packet inspection (DPI) techniques to determine
the type of device hosted behind each network client IP,
and associate the DNS traffic of these clients with their
respective device type labels. For instance, given the traffic
originating from a client Ci, we can leverage HTTP traffic
generated by Ci to infer the type of hardware and operat-
ing system running on it, by parsing User-Agent strings
in HTTP requests from Ci. Then, we can label all DNS

traffic generated by Ci as belonging to a specific device
type, such as a Windows PC, iPhone, iPad, Android phone,
Mac OS laptop, etc. We are interested in labeling DNS
traffic from non-IoT devices, because we aim to use these
labeled DNS traces for two main purposes: (i) to estimate
possible false positives generated by our statistical IoT
fingerprints (Section 4), and (ii) to automatically compute
a detection threshold to be used for global IoT device
enumeration (Section 3.3). The details of our DNS traffic
labeling approach are described in Section 4.1.5.

LDNS includes data from a daily average of more than
54,000 generic, non-IoT devices, with the average count
distribution shown in Table 1. Section 4.1.5 explains the
algorithm and heuristics we used to label DNS queries
from clients within our campus network.

TABLE 1: Generic (non-IoT) device population – average daily counts

Windows Linux Mac iPad Android iPhone
22135 7465 7520 826 6265 9938

4.1.4. Third-Party IoT Device Traffic (TPIoTDNS)
Finally, we obtained network traces collected by a third
party entity unrelated to our institution. Specifically, the
third party independently setup a small network environ-
ment with 6 different active IoT devices from 6 different
manufacturers, and a number of non-IoT devices (the
traces also included traffic from malware-infected ma-
chines, as this was part of a hacking exercise organized by
a funding agency). We use these traces as a way to confirm
that our fingerprints indeed allow us to detect different IoT
devices in different networks, even when multiple devices
are hosted behind the same NAT along with other non-
IoT devices (e.g., Windows machines, Linux machines,
Raspberry PI’s, etc.).

4.1.5. Labeling DNS Traces Using DPI
In this Section, we explain how we label DNS traffic
for the LDNS dataset. As mentioned in Section 4.1.3, we
aim to collect DNS traffic from non-IoT devices because
we aim to use these labeled DNS traces for two main
purposes: (i) to estimate possible false positives generated
by our statistical IoT fingerprints (Section 4), and (ii) to
automatically compute a detection threshold (Section 3.3)
that will be later used for in-the-wild IoT device enumera-
tion (Section 4.8). To this end, we collect DNS traffic from
our own institutional network, and our goal is to label the
DNS traffic from each client in the network with the type
of device that it represents, such as Windows, Mac OS,
or Linux machines, and mobile devices such as Android-
based phones or tablets, iPhones and iPads.

To achieve the above goal, we need to address two
challenges: (1) correctly associating DNS queries ob-
served by our traffic collection infrastructure with the
client that actually generated those queries, and (2) asso-
ciating a device label to each client, as explained below.

The first challenge arises from the fact that our in-
stitutional network is large and is not “flat.” We have a
traffic collection point at the edge of the network, where
we can observe traffic to the main DNS resolver. However,
different departments may internally use a caching DNS
forwarder that accepts DNS requests from a department’s
clients and forwards them to the main resolver. Therefore,

480

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

our data collection infrastructure may record only the IP
address of the DNS forwarder, and not the address of the
client that actually issued a given query. We address this
challenge as follows.

We make the simplifying (but often met) assumption
that after a client issues a DNS request it will subsequently
attempt a TCP connection with (one of) the resolved
IP address(es). Because our traffic collection point can
observe the true IP address of outgoing TCP SYN packets
(since the DNS forwarder is not involved, and no other
middlebox is allowed by our network’s policies), we sub-
stitute the TCP connection initiation to a resolved IP with
a DNS query to the related domain name from which
the IP address was resolved. More specifically, let c be a
client that sends a TCP SYN packet to a destination IP
address p, which the client resolved from domain name
d. To map p back to the domain d queried by c, we
consider the timestamp, ts, of the TCP SYN packet sent
by c to p, and then walk back over the DNS packets with
timestamp t < ts to find the latest occurrence of a domain
name that resolved to p. Notice that this approximates
the behavior of a client that directly uses our main DNS
resolver, with no other DNS cache present in between the
client and the main resolver. Also notice that our DNS
query aggregation time window (discussed in Section 3.1
and Section 4.2) has the effect of removing possible noise
in the domain query frequencies reconstructed with the
method described above.

To address the second challenge (i.e., assigning a
device label), we leverage the fact that generic com-
puting devices, such as desktop computer, laptops, and
mobile devices, run a variety of applications, some of
which generate non-encrypted HTTP traffic that carries
a User-Agent string. We then use the information in
the User-Agent for labeling. Due to space constraints,
we describe the details of this process in Appendix A.

4.2. Experimental Setup
Unless otherwise stated, the results discussed below are
related to IoT device models trained over a period of two
consecutive weeks of network traffic from the IoTDNS
dataset, which are used to compute the domain query
probability models Pk as described in Section 3.1. We
also set the time window length w to be one hour. This
choice is justified by the fact that the vast majority of
domain names queried by IoT devices have a TTL below
3600 seconds, as shown in Figure 6. As explained in
Section 3.1, discretizing time using w has a sort of normal-
izing effect, in that it tends to make the timeline for DNS
queries comparable whether or not the IoT devices reside
behind a NAT and whether or not the NAT implements
its own DNS cache.

To compute the inverse document frequency (IDF)
values for each domain name (see Section 3.1) we use
one day of PDNS data selected within the same training
time period used to compute the Pk models. Furthermore,
to evaluate the false positives raised by each IoT detection
model, we leverage the labeled DNS traffic in LDNS.

4.3. ROC Analysis
As a first experiment, we evaluate the ability of each single
IoT device fingerprint to detect future traffic generated

Figure 6: Distribution of TTLs for domain names queried by IoT devices
(A records). The dashed vertical lines indicates the 3600 seconds mark.

by the same device, and the number of false positives it
may raise over real-world non-IoT traffic. To this end, we
compute and analyze the area under the ROC curve per
each device classifier, as follows. Let Pk be the statistical
model related to IoT device Ik. Also, let Dtrain represent
the training data over which we learn Pk, namely two
weeks of traffic from Ik (from IoTDNS), and Dtest be the
following two weeks of traffic from the same Ik device.
We match model Pk over each day of traffic in Dtest,
and thus compute 14 similarity scores (one score per day).
These represent the set τk of positive scores.

Now, let Dnoniot be one day of traffic extracted from
the LDNS dataset (picked as the last day within the same
two weeks period considered in Dtest). For each generic,
non-IoT device Gi in Dnoniot, we compute the similarity
score between Pk and Gi. These represent the set γk of
negative scores. We then use τk and γk to compute a
partial AUC (pAUC) [21], limiting the maximum false
positive rate to 10−4 (i.e., 0.01%).

We refer to the 4-week period that encompasses train-
ing Pk and then matching it over Dtest and Dnoniot

as Δtest. For each device Ik, we repeat the experiment
outlined above for 23 distinct time periods Δtest. Figure 7
shows, per each device, the distribution of the pAUC
computed per each device fingerprint. The boxplots show
the “spread” of the pAUC, whereas the blue diamonds
indicate the median pAUC across the 23 experiments.

To evaluate if our statistical fingerprint tend to perform
better on test days that are closer to the end of the training
period, we repeat the above 23 experiments while limiting
the span of Dtest to 2 days, 4 days, and 1 week. Due to
space limitations, we report the pAUC results related to
the 4-day Dtest scenario in Figure 11 in Appendix. The
results show that the median pAUC does not change sig-
nificantly, compared to the 2-week test periods (Figure 7),
thus indicating that our IoT DNS fingerprints do not
require very frequent retraining. However, our statistical
models could be easily retrained daily, if desired, because
training only takes less than two hours on an Apache
Spark compute cluster (please see Section 4.8 for more
information about the cluster).

4.4. Confusion Among Devices
We now evaluate whether a DNS traffic model Pk trained
over traffic from IoT device Ik may also be similar to
DNS traffic generated by other IoT devices. To this end,
we compute the similarity between Pk and traffic for
all other IoT devices (including device Ik itself). In this
experiment, we train Pk over a fixed 2-week time window.
Then, we consider the following two weeks (i.e., 14 days)

481

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Fingerprints’ accuracy: Two weeks training / two week testing. Each fingerprint is trained over two weeks of IoT traffic and tested over
traffic collected in the following two weeks. Each test period consists in a different two weeks training / two weeks testing period. Boxplots summarize
the pAUC distribution over 20 different training/testing periods. Blue diamonds indicate the median pAUC.

Figure 8: Confusion among IoT device traffic profiles

482

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: Traffic models learned from Belkin devices

����������Domain
Device

Link MotionSensor Switch Netcam

api.xbcs.net 0.042 0.039 0.039 0.083
nat.xbcs.net 0.042 0.039 0.039 0.044

origin.belkin-us.tendplatform.com − − − 0.083
time.windows.com − − − 0.208
www.belkin.com − − − 1.0

of traffic for computing the similarity scores. Given a
device Ii and a test day t, let st(k, i) be the similarity
between Pk and traffic from Ii during t. Figure 8 reports
the average similarity s̄(k, i) = avgt{st(k, i)} for each
pair (k, i).

Notice that, by construction, the IoT traffic models
are not symmetric. Namely, given two models Pi and Pj
respectively learned from devices Ii and Ij , in general
st(i, j) �= st(j, i). The asymmetry is due to the projection
of the vector representing the DNS traffic being tested
upon in the vector space of the model for which similarity
is being measured, as explained in Section 3.2 (this pro-
jection is important for enabling the detection of multiple
devices even when they reside behind the same NAT).

From Figure 8, we can also notice that there is some
“confusion” among devices from the same manufacturer.
For instance, the statistical model for Belkin’s WeMo
Link has a 1.0 average similarity over traffic generated by
Belkin WeMo Motion Sensor, and Belkin WeMo Switch,
and a 0.93 average similarity over traffic from Belkin
Netcam. We can see why from Table 2, which shows the
statistical profile for each of the devices above.

For each device in Table 2, its column represents
the set of domains queried by the device over the en-
tire training period. Also, for each domain, it shows the
probability that the domain will be queried in any time
window of length w (one hour, in our experiments). Notice
that symbol ‘−’ indicates that the domain name was not
queried by the device in the corresponding column. As
can be seen, the Link, Motion Sensor, and Switch have an
almost identical DNS profile (likely because they use the
same firmware). On the other hand, the Netcam behaves
somewhat differently. However, when projecting the set
of domains queried by Netcam over the DNS query space
of Link (i.e., keeping only the first two domain names in
Table 2), for instance, we obtain a 2-dimensional vector
with probabilities 0.083 and 0.044, which is fairly well
aligned (though not perfectly) with the Link model, and
thus yields a high cosine similarity of 0.93 shown in
Figure 8 (notice that 0.93 is an average similarity across
14 experiments).

Similarly, Google Home and Google Home Mini ap-
pear to have exactly the same DNS behavior, which
justifies their similarity values in Figure 8. After a quick
investigation, we found that these two devices in fact run
the exact same firmware version on slightly different hard-
ware (specifically, both currently run cast firmware ver-
sions 1.42.180518). On the other hand, Google Home
Hub runs a different firmware version (1.42.171872),
and its behavior is distinguishable (though still somewhat
similar) from Google Home and Google Home Mini.

The results in the example above show that in some
cases it is not possible to distinguish among certain
devices from the same manufacturer using only DNS
traffic, in that they have the exact same domain name

query behavior. When one of those fingerprints matches,
say for example the Belkin WeMo Switch fingerprint,
IoTFinder will indicate that three devices match with
similarity 1.0 (Switch itself, Link and Motion Sensor),
one device matches with similarity 0.93 (Netcam), etc. In
a real-world deployment scenario, this uncertainty means
that a given client IP address may be hosting one or more
of the Belkin devices that match with high similarity, but
in this case we are not able to identify exactly what IoT
device and how many are there (remember that we may be
observing “mixed” traffic from a NAT). However, notice
that this is not always the case for devices from the same
vendor. For instance, Amazon, Logitech, and Nest devices
appear to have a sufficiently different behavior, among
products from the same vendor.

4.5. Resilience to DNS Packet Loss
Passive DNS data collection typically happens either from
DNS resolver logs or via traffic sniffing. When collecting
DNS messages from traffic, packet loss is almost unavoid-
able. Therefore, we also make an effort to analyze how re-
silient our IoT detection models are to noise due to packet
loss. To this end, we simulate two types of loss, namely
uniform and bursty, with different loss probabilities.

Due to space constraints, we discuss the details of
this experiment in Appendix C, and visualize the results
in Figure 9. In summary, the results show that while
the partial AUC decreases as the packet loss probability
increases, many IoT devices can still be detected with a
high partial AUC even at fairly high loss rates (e.g., 50%).

4.6. Detecting IoT Devices Behind a NAT
In this section, we evaluate if the IoT devices can be
detected when their traffic is mixed-in with many other
IoT and non-IoT devices. To this end, we perform an
experiment in which we take all DNS traffic related to
one day of traces from our IoT lab, and rewrite all source
IP addresses to a same single IP address, p (the exact IP
address value itself does not influence detection). Simi-
larly, we select 60 different devices from one day of our
LDNS traffic, picking at random 10 IP addresses from each
of the following labels: Windows, Mac, Linux, Android,
iPhone, and iPads. We then also rewrite their source IP
address as p. In other words, we pretend that there are
more than 100 devices behind a NAT, and that therefore
all these devices share the same IP address. Furthermore,
we pretend that their DNS traffic is collected “above” the
NAT, and the traffic is therefore all “mixed.” We then
match our previously trained IoT models to the dataset
obtained as described above, to determine what devices
we were able to detect, and what would be the level of
false positives (FPs) and false negatives (FNs).

First, we compute the baseline: how many devices
could we detect if the NAT was not present? To answer
this question, we match our IoT fingerprints trained be-
tween August 4 and August 18, 2019, and match them
against all IoT lab traffic from August 28, 2019 (10 days
after training ended). On that test day, 52 IoT devices
generated DNS traffic (one device was inactive). After
computing the similarity between our IoT models and the
test traces, we applied the automatically computed detec-
tion thresholds for two different maximum false positive

483

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Fingerprints accuracy tested over noisy DNS traffic. DNS packet loss is simulated using two different models: uniform random loss, and
bursty loss. We consider a single two-week training / test period. Packet loss is applied to the test dataset.

values: 0.1% and 0.01%. With these settings, we were able
to detect 50 and 46 devices (i.e., 2 and 6 FNs), respectively
(naturally, the lower the false positives we require, the
lower the detection rate will tend to be).

As a second experiment, we “mixed” the traffic from
all 52 IoT devices by rewriting their source IP addresses,
as explained earlier. Essentially, in this setting we are sim-
ulating a NAT’ed network with 52 different IoT devices
behind the same IP. Applying the same IoT models used
above, and the same thresholds computed for maximum
FP rates of 0.1% and 0.01%, we were able to detect 45 and
38 devices (i.e., 7 and 14 FNs), respectively. The decrease
in the number of detected devices is due to the fact that
mixing the traffic alters the frequency with which some
domains appear to be queried by the NAT.

Third, we “mixed” the IoT traffic from all 52 IoT
devices with traffic from the 60 non-IoT devices selected
at random from 6 device types in LDNS, as mentioned
earlier. As before, we match our IoT model against the
(simulated) NATed traffic, with detection thresholds com-
puted for a maximum FP rates of 0.1% and 0.01%. We
were able to detect 40 and 30 IoT devices (i.e., 12 and 22
FNs), respectively.

Finally, we matched our IoT fingerprints against only
non-IoT traffic from the 60 devices mentioned above,
again pretending they were behind the same NAT, and
we found no false positives for either of the two FP rates.
These results show that, even in the challenging case of
112 different IoT and non-IoT devices behind a NAT, we
were able to detect up to 40 out of 52 IoT devices with
no false positive (the full list of 40 detected devices and
12 missed devices is reported in Appendix D).

4.7. Detecting Third-Party IoT Devices
We had the opportunity to test IoTFinder against net-
work traffic collected at a separate lab network setup by
an external, third-party entity that is completely unrelated
to our organization. We refer to this dataset of network
traces as TPIoTDNS. The dataset consists of 8 days of full
DNS traffic traces. All DNS traffic had the same source IP
address, which appears as a NAT device or DNS resolver
that performs DNS caching. The network hosted a number
of IoT devices, as well as other non-IoT devices, including
a Raspberry Pi, a number of Windows and Linux virtual

machines, etc. This network was setup by the third-party
for a security-related exercise, and also hosted a number
of malware infections that generated malicious (e.g., DGA
or C&C-related) DNS queries.

After matching our models against the third-party
traces, we computed the IoT device detections that ex-
ceeded the detection thresholds computed for 0.01% FPs,
and then consulted the third-party data provider to verify
what devices we correctly detected and what we might
have missed. The third-party data provider confirmed that
they had setup 6 active IoT devices (though not all devices
were active on all 8 days): a MyCloud EX2 Ultra NAS
device, a Roku streaming device, a Samsung SmartThings
hub, an Apple TV box, a Netgear Arlo camera, and a
Withings Home camera. Of these, we detected all devices
correctly, except for Apple TV, which we consistently
missed because the similarity scores generated for each
day by our model were below the threshold computed for
0.01% FPs. We also had zero false positives.

We manually investigated why we missed the Apple
TV device, and we found that while the detection thresh-
old was automatically set to 0.763, the third-party device
matched our model with a similarity score between 0.507
and 0.537. As demonstrated earlier (Section 4.6), some
devices are more difficult to detect among “mixed” IoT
and non-IoT traffic, and this may be the reason why our
models did not match the third-party Apple TV device.

4.8. Estimating IoT Populations
We also deployed IoTFinder on DNS traffic collected
at a large US ISP. While we do not have ground truth
for the ISP traffic and cannot compute the accuracy of
our device identification results, we believe these mea-
surements are still useful, in that they aim to show that
our DNS-based IoT identification system is highly effi-
cient. To achieve this goal, we invested significant time
in an Apache Spark-based implementation of the system
(written in Scala) to leverage high levels of parallelism.

To concretely measure how efficiently we can match
our IoT fingerprints, we use our IoT models trained over
a period of two weeks, and test them against one full
day of ISP DNS traffic. Our experiments are performed
using a Spark cluster consisting of about 100 compute
nodes, using 513 VCores and approximately 1.2TB of

484

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Ro
ku

TV

Am
az

on
Ec

ho
Dot

Gen
3

Nes
tT

he
rm

os
ta

t
Pla

yS
ta

tio
n4

Nes
tP

ro
te

ct

Goo
gle

Hom
eM

ini
Goo

gle
Hom

e
Ap

ple
Hom

eP
od

Ri
ng

Doo
rb

ell

Am
az

on
Ec

ho
Gen

1
Ro

ku
4

So
no

s

Net
ge

ar
Ar

loC
am

er
a

Ap
ple

TV
(4

th
Gen

)
Am

az
on

Fir
eT

V

Ch
am

be
rla

inm
yQ

Gar
ag

eO
pe

ne
r

Goo
gle

Hom
eH

ub
Ro

om
ba

MiC
as

aV
er

de
Ve

ra
Lit

e
So

no
sB

ea
m

0

100000

200000

300000

400000

500000

600000

U
ni

qu
e

IP
s

Device Distribution (Top 20)

Figure 10: IoT device distribution in large US ISP network (top 20
devices by count).

total memory allocated to our job. With this setup, de-
ploying our fingerprints over the DNS traffic of more than
40 million ISP clients takes about 72 minutes. Figure 10
shows the distribution of the top 20 most popular devices
that matched our models.

5. Discussion and Limitations
Unlike network flows (e.g., TCP/UDP flow summaries and
statistics), DNS traffic is typically more light weight and
easier to collect from geographically distributed Internet
vantage points. At the same time, the granularity of infor-
mation contained in DNS messages is significantly lower
than that available in detailed flow statistics (e.g., reported
via Cisco NetFlow). Yet, our DNS-based IoT fingerprints
are able to model IoT traffic behaviors and enable the
accurate detection of many (though not all) IoT devices,
even when they are co-hosted behind a NAT along with
many non-IoT devices.

In some cases, DNS-based traffic models are unable
to capture differences between separate devices produced
by the same vendor. For instance, Google Home and
Google Home Mini smart speakers have identical DNS
behavior, as discussed in Section 4.4. This is why the
IoT device population numbers reported in Figure 10 for
those devices are the same, and should be interpreted as
stating that either device is present in the network, with the
reported count as an aggregate of the two. This and other
similar cases can be inferred by analyzing the “confusion
matrix” reported in Figure 8 (Section 4.4). At the same
time, whenever an IoT fingerprint match is found to pass
the related detection threshold, our system reports not
only that a device has been detected, but also with what
similarity. Therefore, when the similarity is not identical,
it can be used as a sort of confidence score so that different
devices can be disambiguated by selecting the device with
the highest similarity.

Different devices that run similar software may also be
a source of confusion, for instance in the case of devices
that use the Alexa Voice Service (AVS) API or the Google
Assistant API. However, in our experiment we did not
find this to be an issue. For instance, some of the non-
Amazon IoT devices in our lab are Alexa-enabled (e.g.,
SonosBeam). However, those devices can be distinguished
well from Amazon devices such as AmazonEchoGen1 and

AmazonEchoDotGen3. Also, our LDNS dataset includes
traffic from more than 16,000 mobile devices, including
iPhones and Android devices that may use the Amazon
Alexa or Google Assistant app. Yet, we show that our
system can accurately detect most IoT devices with very
few false positives. The main reason is that while there
may be common domains queried by different devices and
apps, overall the combination of domains that are queried
by a device and the (approximate) frequency with which
they are queried make the device distinguishable.

Accurately detecting IoT devices becomes increas-
ingly more difficult when a large number (e.g., hundreds)
of IoT and non-IoT devices are hosted behind the same IP
(e.g., behind the same NAT). Nonetheless, we showed that
our statistical fingerprints are still able to correctly detect
a large variety of IoT devices with no false positives, even
in such challenging scenarios (see Section 4.6). It should
be also noted that currently our system is not capable of
identifying how many instances of the same device are
behind a NAT. The main reason is that the DNS caching
effects will likely “compress” query frequency informa-
tion, making it difficult to idenitfy the exact number of
devices that exhibit identical DNS behavior. However, it
is worth noting that once we know that a specific IoT
device model is behind a NAT, if that device presents
known vulnerabilities then we can infer that the hosting
network is potentially vulnerable to attacks, regardless of
the exact number of vulnerable identical devices in it.

Naturally, our approach is limited to non-encrypted
DNS traffic, since we need access to the domain name
queried. Recently, there has been a push towards en-
crypting DNS traffic, using DoH (RFC8484) or DoT
(RFC7858). In particular, centralized DoH may represent
an issue, in that it may prevent local network operators
(including ISPs) from gathering details about DNS traffic
generated from their clients. However, we should consider
a few observations. First, DoH is likely to have a nega-
tive impact on other existing security applications, and
there are proposals that are being made to try to prevent
this [22]. Secondly, DoH is currently limited mostly to
DNS queries issued by browser. As such, if DoH becomes
the default protocol for major browsers, IoT devices will
likely be easier to detect, since their DNS queries will be
mixed-in with a much smaller amount of non-DNS traffic.
Future IoT devices may eventually start adopting DoH or
DoT as well. However, for many legacy IoT devices whose
resources are constrained and don’t allow for adding DNS
encryption software, their DNS traffic profile will likely
become increasingly distinguishable. Finally, while new
(or updated) IoT devices that adopt DoH may be hidden
from direct ISP monitoring, our methodology remains
valid, in that it could be applied by a DoH operator (e.g.,
Google or Cloudflare), instead of single ISPs, to estimate
the population of IoT devices around the Internet.

6. Related Work
IoT devices have recently received considerable atten-
tion by cybersecurity researchers, partially due to their
increasing popularity and their involvement in notable
security incidents [5]. In particular, a number of works
have explored using network traffic analysis to detect IoT
devices in a network or study their behavior [23]–[37].

485

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

A number of these works leverage network flow statis-
tics for device identification [23]–[25] or compromised
device detection [26]–[28]. Other works have used an
analysis of different application-layer protocols, such as
HTTP, Telnet, DNS, etc., to identify IoT devices [29]–
[32]. Furthermore, active probing techniques have also
been proposed to identify IoT devices by scanning net-
work assets [28], [33], or using the devices’ MAC address
to identify vendor and product type [38], [39]. It is worth
noting that many of these works require access to the local
network where the IoT devices are hosted, or to network
flows, which are often expensive to collect at very large
scale. On the other hand, we focus on efficiently detecting
IoT devices based only on large-scale passive DNS traffic
analysis, since globally distributed DNS traffic is typically
easier to collect at scale (and is in some cases available
for purchase).

A few recent works study the characteristics of DNS
traffic generated by IoT devices [35], [36] and discuss
related privacy implications [34], [40]. More recently, two
works have considered using DNS traffic for IoT device
detection [19], [37]. To the best of our knowledge, [19],
[37] are the closest works to ours.

In [19], the authors use both domain name queries and
destination IP addresses contacted by IoT devices to build
a device detection system. As mentioned in Section 2.2,
Guo et al. [19] proposed a number of manually devised
heuristics to filter out IoT-queried domains that may raise
false positives. For instance, given a set of domains
queried by an IoT device, they probe the domains to
determine whether they are “human facing” (i.e., whether
they contain human-accessible content). Furthermore, they
filter out domain names that do not appear to include
the IoT device’s vendor name. However, as discussed in
Section 2.2, this heuristic may discard domain names that
are instead highly discriminative and can be used to more
accurately detect the presence of a specific IoT device.
More importantly, [19] proposes to use single domain
names for detection, which can cause significant confusion
among devices that have overlapping DNS behavior (e.g.,
different device models from the same vendor). On the
other hand, IoTFinter does not rely on the heuristics
mentioned above, and can instead automatically learn IoT
device detection models based on combinations of domain
names queried by the devices. In addition, IoTFinter
automatically learns a detection threshold for each statis-
tical IoT fingerprint, so to limit possible false positives to
a desired tolerable amount.

After building IoTFinter, we became aware of a
recently published work [37] that also proposes the use of
TF-IDF to model DNS traffic generated by IoT devices.
However, [37] is quite different from our work. First,
the system proposed in [37] requires that the traffic to
be classified must be known to originate from a single
IoT device. Quoting from [37]: “[the detection] algorithm
should only be invoked when it is known that the traffic
document belongs to a device that is known to be an IoT
device.” On the contrary, IoTFinder does not require
such prior knowledge, and is able to detect IoT devices
even when they are co-hosted behind the same IP address
(e.g., behind a same NAT) along with many other IoT and
non-IoT devices. Secondly, in [37] the detection thresholds
must be set manually by an operator, whereas we devise an

algorithm to label real-world non-IoT traffic and automate
the process of learning a detection threshold per each de-
vice model to achieve a predetermined maximum tolerable
false positive rate. Also, the detection pipeline presented
in [37] relies on WHOIS records and x509 certificates
to identify the vendor of an IoT device. However, in
many practical cases the owner of the domain name may
not be the same as the vendor, such as when private
WHOIS records are used, or when services are hosted
on a cloud-related domain (e.g., AWS). In this case, the
device may ultimately be assigned to the wrong vendor.
This erroneous decision would then cascade to the device
type classifier, which relies on the success of the vendor
classifier for correct device identification [37]. Our work
is different, because we rely only on DNS traffic analysis,
and make no assumptions on the ownership of the domain
names queried by an IoT device. Furthermore, we focus
on large-scale detection, and implement IoTFinter to
efficiently detect many different IoT devices within large
ISP networks hosting tens of millions of clients.

There also exists a proposal to enable the identification
of IoT devices via automatic DNS name registrations [41].
However, it is unclear if this proposal will be widely
adopted in the future, because it requires the collaboration
of IoT vendors. Furthermore, legacy IoT devices may
remain undetectable via this mechanism. On the other
hand, our system does not require the collaboration of
IoT vendors, and can detect IoT devices “as is”, including
legacy devices that may not support future protocols.

7. Conclusion
We presented IoTFinder, a system for efficient, large-
scale passive identification of IoT devices. IoTFinder
leverages distributed passive DNS data collection and a
machine learning-based approach to accurately identify a
large variety of IoT devices based solely on their DNS
fingerprints. IoTFinder is also independent of whether
the devices reside behind a NAT or other middleboxes.
We evaluated IoTFinder’s accuracy in several differ-
ent settings, including computing detection results over a
third-party IoT traffic dataset and DNS traffic collected at
a US-based ISP hosting more than 40 million clients. The
experimental results showed that our approach allows for
accurately detecting many diverse IoT devices, even when
they are hosted behind a NAT and their traffic is “mixed”
with traffic generated by other IoT and non-IoT devices
hosted in the same local network.

Acknowledgments
We would like to thank Panagiotis Kintis for providing
very helpful advice on our Spark/Scala system implemen-
tation and for his valuable research insights. We also thank
the anonymous reviewers and shepherd for the construc-
tive comments and suggestions on how to improve this
paper. This material is based in part upon work supported
by the Defense Advanced Research Agency (DARPA)
under Contract No. 2106EHP. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of DARPA.

486

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

References
[1] “IoT Growth,” https://www.statista.com/statistics/471264/iot-num

ber-of-connected-devices-worldwide.

[2] “Prediction for the growth of IoT devices,” https://www.gartner.co
m/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billi
on-enterprise-and-automotive-io.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis et al., “Understanding the mirai botnet,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp.
1093–1110.

[4] “VPNFilter,” https://www.ic3.gov/media/2018/180525.aspx.

[5] “From homes to the office: Revisiting network security in the age
of the iot,” https://www.trendmicro.com/vinfo/us/security/news/in
ternet-of-things/from-homes-to-the-office-revisiting-network-sec
urity-in-the-age-of-the-iot.

[6] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Hal-
derman, “A search engine backed by internet-wide scanning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015, pp. 542–553.

[7] “Censys,” https://censys.io.

[8] “Shodan,” https://shodan.io.

[9] K. Borgolte, S. Hao, T. Fiebig, and G. Vigna, “Enumerating
active ipv6 hosts for large-scale security scans via DNSSEC-
signed reverse zones,” in 2018 IEEE Symposium on Security
and Privacy (SP), vol. 00, pp. 438–452. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2018.00027

[10] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson,
“Target generation for internet-wide ipv6 scanning,” in Proceedings
of the 2017 Internet Measurement Conference, ser. IMC ’17, 2017.

[11] P. Kintis, N. Miramirkhani, C. Lever, Y. Chen, R. Romero-Gómez,
N. Pitropakis, N. Nikiforakis, and M. Antonakakis, “Hiding in
plain sight: A longitudinal study of combosquatting abuse,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 569–586.

[12] C. Lever, R. Walls, Y. Nadji, D. Dagon, P. McDaniel, and M. An-
tonakakis, “Domain-z: 28 registrations later measuring the ex-
ploitation of residual trust in domains,” in 2016 IEEE Symposium
on Security and Privacy (SP). IEEE, 2016, pp. 691–706.

[13] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon,
“Detecting malware domains at the upper DNS hierarchy.” in
USENIX security symposium, vol. 11, 2011, pp. 1–16.

[14] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for DNS.” in USENIX
security symposium, 2010, pp. 273–290.

[15] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-
Nimeh, W. Lee, and D. Dagon, “From throw-away traffic to bots:
detecting the rise of dga-based malware,” in 21st USENIX Security
Symposium, 2012, pp. 491–506.

[16] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure:
Finding malicious domains using passive DNS analysis.” in Ndss,
2011, pp. 1–17.

[17] R. Perdisci, I. Corona, and G. Giacinto, “Early detection of mali-
cious flux networks via large-scale passive DNS traffic analysis,”
IEEE Transactions on Dependable and Secure Computing, vol. 9,
no. 5, pp. 714–726, 2012.

[18] “FarSight DNS,” https://www.farsightsecurity.com/solutions/dns
db.

[19] H. Guo and J. Heidemann, “Ip-based iot device detection,” in
Proceedings of the 2018 Workshop on IoT Security and Privacy,
ser. IoT S&P ’18, 2018.

[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to In-
formation Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

[21] S. D. Walter, “The partial area under the summary roc curve,”
Statistics in Medicine, vol. 24, no. 13, pp. 2025–2040, 2005.

[22] J. Livingood, M. Antonakakis, B. Sleigh, and A. Winfield, “Cen-
tralized dns over https (doh) implementation issues and risks,”
https://tools.ietf.org/html/draft- livingood-doh-implementation
-risks-issues-04, 2019.

[23] M. R. Santos, R. M. Andrade, D. G. Gomes, and A. C. Callado, “An
efficient approach for device identification and traffic classification
in iot ecosystems,” in 2018 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2018, pp. 00 304–00 309.

[24] O. Salman, I. H. Elhajj, A. Chehab, and A. Kayssi, “A machine
learning based framework for iot device identification and abnor-
mal traffic detection,” Transactions on Emerging Telecommunica-
tions Technologies, p. e3743, 2019.

[25] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and
N. Asokan, “Audi: Toward autonomous iot device-type identifi-
cation using periodic communication,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1402–1412, 2019.

[26] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan,
and A.-R. Sadeghi, “Dı̈ot: A federated self-learning anomaly detec-
tion system for IoT,” in 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2019, pp.
756–767.

[27] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and
H. Ming, “Ad-iot: anomaly detection of iot cyberattacks in smart
city using machine learning,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC). IEEE,
2019, pp. 0305–0310.

[28] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi,
and S. Tarkoma, “Iot sentinel: Automated device-type identification
for security enforcement in iot,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE,
2017, pp. 2177–2184.

[29] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural
networks for internet of things,” IEEE Access, vol. 5, pp. 18 042–
18 050, 2017.

[30] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman, “Characterizing and
classifying iot traffic in smart cities and campuses,” in 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2017, pp. 559–564.

[31] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and
I. Ray, “Iotsense: Behavioral fingerprinting of iot devices,” arXiv
preprint arXiv:1804.03852, 2018.

[32] B. A. Desai, D. M. Divakaran, I. Nevat, G. W. Peter, and M. Gu-
rusamy, “A feature-ranking framework for iot device classification,”
in 2019 11th International Conference on Communication Systems
& Networks (COMSNETS). IEEE, 2019, pp. 64–71.

[33] A. Dainotti, K. Benson, A. King, B. Huffaker, E. Glatz, X. Dim-
itropoulos, P. Richter, A. Finamore, and A. C. Snoeren, “Lost in
space: improving inference of ipv4 address space utilization,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 6, pp.
1862–1876, 2016.

[34] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home
is no castle: Privacy vulnerabilities of encrypted iot traffic,”
CoRR, vol. abs/1705.06805, 2017. [Online]. Available: http:
//arxiv.org/abs/1705.06805

[35] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok:
Security evaluation of home-based iot deployments,” in IEEE S&P,
2019, pp. 208–226.

[36] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun,
and H. Haddadi, “Information exposure from consumer iot devices:
A multidimensional, network-informed measurement approach,” in
Proceedings of the Internet Measurement Conference. ACM,
2019, pp. 267–279.

[37] F. Le, J. Ortiz, D. Verma, and D. Kandlur, “Policy-based identifi-
cation of iot devices vendor and type by DNS traffic analysis,” in
Policy-Based Autonomic Data Governance. Springer, 2019, pp.
180–201.

[38] J. Martin, E. Rye, and R. Beverly, “Decomposition of mac address
structure for granular device inference,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM,
2016, pp. 78–88.

487

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

[39] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric, “All things considered:
an analysis of IoT devices on home networks,” in 28th USENIX
Security Symposium, 2019, pp. 1169–1185.

[40] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and
N. Feamster, “Spying on the smart home: Privacy attacks and
defenses on encrypted iot traffic,” CoRR, vol. abs/1708.05044,
2017. [Online]. Available: http://arxiv.org/abs/1708.05044

[41] J. Jeong, S. Lee, and J. Park, “DNS name autoconfiguration for
internet of things devices,” https://tools.ietf.org/id/draft-jeong-ip
wave-iot-dns-autoconf-04.html, year = 2019, month = April.

[42] “PF RING,” https://www.ntop.org/products/packet-capture/pf rin
g.

[43] L. Rizzo, “Netmap: a novel framework for fast packet i/o,” in
21st USENIX Security Symposium (USENIX Security 12), 2012,
pp. 101–112.

Appendix A.
User-Agent String Analysis
To label non-IoT devices in real traffic, we rely on
User-Agent strings found in HTTP traffic. For instance,
consider the strings in Example 1. Looking closely, it’s
easy to see that they in some cases reveal the type
of hardware (e.g., iPhone, PC desktop, etc.) and/or
the operating system, from which the hardware can be
reasonably inferred (e.g., Intel Mac OS X 10_10_5
likely indicates an Apple laptop or desktop system). To
use this information, we collected similar strings from
traffic traces collected withing our campus network for
a few days. We then manually extracted a number of
regular expressions that capture the main keywords that
allow for inferring a device label for the vast majority
of clients. Each User-Agent regular expression we
extract corresponds to one of these 6 labels: Windows,
Mac, Linux, Android, iPhone, and iPad. Devices that
cannot be associated to one of those labels are discarded
from further consideration. When a client issues an HTTP
request, we extract its User-Agent string, match it to
our set of regular expressions, and attribute the device
label associated with the regular expression that matches
it (if any).

Appendix B.
Additional ROC Analysis
Figure 11 shows results for an experiment similar to what
reported in Figure 7, with the only difference being that
each test period is 4 days long, instead of 2 weeks long. As
discussed in Section 4.3 the results show that the pAUC
is not significantly different between the two experiments,
which suggests that our IoT fingerprints do not need to
be re-trained very frequently.

Appendix C.
Resilience to DNS Packet Loss
One of the main challenges when collecting network
traffic in large networks, including DNS traffic, is lim-
iting the packet loss rate. While a number of effective
approaches have been proposed to reduce packet loss (e.g.,
in [42], [43]), it may not always be possible to completely
eliminate it. The effect packet loss has on a device’s
traffic profile is obvious: certain domain names that the
device queried may be observed with lower frequency,
or not observed at all (e.g., in case of domains that

are infrequently queried to begin with, and are unluckily
affected by packet loss). We therefore decided to evaluate
how resilient our IoT models are to DNS packet loss. To
this end, we simulate two packet loss scenarios:

• Uniform loss: each packet has the same chance pu
to be dropped.

• Bursty loss: packets have an increased chance pb to
be lost during certain time windows, compared to
the loss probability pn (with pn < pb) experienced
at “normal” times.

While we acknowledge that the heuristics outlined
do not make use of real-world packet loss model, they
allow us to approximately quantify the resilience of our
fingerprints to different types and levels of noise. We leave
the evaluation of more realistic packet loss models to
future work.

The bursty loss scenario is intend to (very coarsely)
simulate the effect of traffic peaks at certain hours of the
day, when packet loss may consequently worsen. In our
case, we set the burst window duration to be one hour,
and the time between two bursts to be approximately
2.5 hours, giving us 6 traffic bursts in 24 hours. For the
uniform loss scenario, we vary pu between 0.1 and 0.8,
whereas for the bursty loss scenario, we fix pb = 0.8 and
pn = 0.1.

After imposing the simulated traffic loss over our
IoTDNS dataset, we tested our IoT fingerprints in a way
similar to the experiments presented in Section 4.3, and
obtained the results summarized in Figure 9 (notice that at
the time when this experiment was run, some of the IoT
devices in our lab were not active, and are therefore not
represented in the figure). Naturally, in the case of uniform
noise, the higher the packet loss, the more difficult it
becomes to detect a device. However, even at pu = 0.8
many of the devices can still be accurately detected. This
may be due to the fact that if a device queries a set of
domains relatively frequently, the noise has the effect of
reducing the query counts by the same proportion. In this
case, the cosine similarity may not be affected, because it
would still measure the same angle between two vectors,
even if one of the vectors has a smaller norm. Conversely,
the bursty noise affects the traffic only during certain time
windows, and queries during low traffic volume times will
not be heavily affected. This gives us a chance to still
detect the devices based on their activities outside of peak
times.

Appendix D.
List of Detected and Missed Devices in NAT
experiment
Below, we report the list of IoT devices that we detected
and we missed during the simulated NAT experiments in
which all 52 active IoT devices are mixed-in, along with
non-IoT devices, and the maximum FP rate is set to 0.1%
(see Section 4.6):

=== DETECTED ===
AVTechIPCam
AmazonEchoDotGen3
AppleHomePod
AugustDoorbellCam
AxisNetworkCamera
BelkinWeMoCrockpot
BelkinWeMoLink
Canary
ChamberlainmyQGarageOpener

488

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

Example 1 Example User-Agent strings extracted from real-world HTTP traffic.
1) Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0
2) Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/603.3.8 (KHTML, like Gecko) [...] Safari/603.3.8
3) Mozilla/5.0 (iPad; U; CPU OS 3_2_1 like Mac OS X; en-us) AppleWebKit/531.21.10 (KHTML, like Gecko) Mobile/7B405
4) Mozilla/5.0 (iPhone; CPU iPhone OS 12_3_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148
5) Spotify/8.5.31 Android/28 (SM-G960U)
6) Spotify/110500153 Linux/0 (PC desktop)

Figure 11: Fingerprints’ accuracy: two weeks training / four days testing. Each fingerprint is trained over two weeks of IoT traffic and tested over
traffic collected in the following two weeks. Each test period consists of a different two weeks training / four days testing period. Boxplots summarize
the pAUC distribution over 20 different training/testing periods. Blue diamonds indicate the median pAUC.

FacebookPortal
GoogleHomeHub
GoogleOnHub
HarmonKardonInvoke
LGWebOSTV
LIFXVirtualBulb
LogitechHarmonyHub
LogitechLogiCircle
MiCasaVerdeVeraLite
MyCloudEX2Ultra
NestCamIQ
NestCamera
NestProtect
NestThermostat
NetgearArloCamera
NintendoSwitch
PhilipsHUEHub
PlayStation4
Rachio3
RingDoorbell
Roku4
RokuTV
Roomba
SamsungSmartThingsHub
SecurifiAlmond
Sonos
SonosBeam
TP-LinkSmartWiFiLEDBulb
TP-LinkWiFiPlug
WithingsHome
nVidiaShield

=== MISSED ===
AmazonEchoGen1
AmazonFireTV
AppleTV(4thGen)
BelkinNetcam
BelkinWeMoMotionSensor
BelkinWeMoSwitch
CasetaWirelessHub
GoogleHome
GoogleHomeMini
XboxOneX

489

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 23,2021 at 00:04:13 UTC from IEEE Xplore. Restrictions apply.

