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Abstract 1 Introduction

Many botnet detection systems employ a blacklist of Botnets are groups of malware-compromised ma-
known command and control (C&C) domains to detectchines, orbots that can be remotely controlled by an
bots and block their traffic. Similar to signature-basedattacker (thdotmaste) through acommand and control
virus detection, such a botnet detection approach is stati(lC&C) communication channel. Botnets have become
because the blacklist is updated only after running an exthe main platform for cyber-criminals to send spam, steal
ternal (and often manual) process of domain discoveryprivate information, host phishing web-pages, etc. Over
As a response, botmasters have begun employing domatime, attackers have developed C&C channels with dif-
generation algorithms (DGAs) to dynamically produce aferent network structures. Most botnets today rely on
large number of random domain names and select a smadl centralized C&C server, whereby bots query a prede-
subset for actual C&C use. Thatis, a C&C domain is ranfined C&C domain name that resolves to the IP address
domly generated and used for a very short period of timepf the C&C server from which commands will be re-
thus rendering detection approaches that rely on staticeived. Such centralized C&C structures suffer from the
domain lists ineffective. Naturally, if we know how a do- single point of failureproblem because if the C&C do-
main generation algorithm works, we can generate thenain is identified and taken down, the botmaster loses
domains ahead of time and still identify and block bot- control over the entire botnet.
net C&C traffic. The existing solutions are largely based To overcome this limitation, attackers have used P2P-
on reverse engineering of the bot malware executablesrased C&C structures in botnets such as Nugache [35],
which is not always feasible. Storm [38], and more recently Waledac [39], Zeus [2],

In this paper we present a new technique to detect rarand Alureon (a.k.a. TDL4) [12]. While P2P botnets
domly generated domains without reversing. Our insightprovide a more robust C&C structure that is difficult to
is that most of the DGA-generated (random) domainsdetect and take down, they are typically harder to imple-
that a bot queries would result in Non-Existent Domainment and maintain. In an effort to combine the simplicity
(NXDomain) responses, and that bots from the same botsf centralized C&Cs with the robustness of P2P-based
net (with the same DGA algorithm) would generate sim-structures, attackers have recently developed a number
ilar NXDomain traffic. Our approach uses a combinationof botnets that locate their C&C server throumtomat-
of clustering and classification algorithms. The cluster-ically generatedpseudo-random domains names. In or-
ing algorithm clusters domains based on the similarity inder to contact the botmaster, each bot periodically exe-
the make-ups of domain names as well as the groups afutes adomain generation algorithDGA) that, given
machines that queried these domains. The classificatioa random seed (e.g., the current date), produces a list of
algorithm is used to assign the generated clusters to modsandidateC&C domains. The bot then attempts to re-
els of known DGAs. If a cluster cannot be assigned to asolve these domain names by sending DNS queries un-
known model, then a new model is produced, indicatingtil one of the domains resolves to the IP address of a
a new DGA variant or family. We implemented a pro- C&C server. This strategy provides a remarkable level
totype system and evaluated it on real-world DNS trafficof agility because even if one or more C&C domain
obtained from large ISPs in North America. We reportnames or IP addresses are identified and taken down, the
the discovery of twelve DGAs. Half of them are variants bots will eventually get the IP address of the relocated
of known (botnet) DGAs, and the other half are brandC&C server via DNS queries to the next set of automat-
new DGAs that have never been reported before. ically generated domains. Notable examples of DGA-



based botnets (or DGA-bots, for short) are Bobax [33],agesthrow-away traffic(i.e., unsuccessful DNS resolu-
Kraken [29], Sinowal (a.k.a. Torpig) [34], Srizbi [30], tions)to (1) discover the rise of new DGA-based botnets,
Conficker-A/B [26], Conficker-C [23] and Murofet [31]. (2) accurately detect bot-compromised machines, and (3)
A defender can attempt to reverse engineer the bot malkdentify and block the active C&C domains queried by
ware, particularly its DGA algorithm, to pre-compute the discovered DGA-bots. Pleiades achieves these goals
current and future candidate C&C domains in order toby monitoring the DNS traffic in local networks, without
detect, block, and even take down the botnet. Howeverthe need for a large-scale deployment of DNS analysis
reverse engineering is not always feasible because the btiols required by prior work.

malware can be updated very quickly (e.g., hourly) and Furthermore, while botnet detection systems that fo-
obfuscated (e.g., encrypted, and only decrypted and exeus on network flow analysis [13, 36, 44, 46] or require
cuted by external triggers such as time). deep packet inspection [10, 14] may be capable of de-
In this paper, we propose a novel detection systemtecting compromised machines within a local network,
called Pleiades, to identify DGA-based bots within athey do not scale well to the overwhelming volume of
monitored network without reverse engineering the botraffic typical of large ISP environments. On the other
malware. Pleiades is placed “below” the local recursivehand, Pleiades employdightweight DNS-based moni-
DNS (RDNS) server or at the edge of a network to mon-toring approach, and can detect DGA-based malware by
itor DNS query/response messages from/to the machingscusing on a small fraction of all DNS traffic in an ISP
within the network. Specifically, Pleiades analyzes DNSnetwork. This allows Pleiades to scale well to very large
queries for domain names that resultName Errorre- ISP networks, where we evaluated our prototype system.
sponses [19], also calleddXDOMAINesponses, i.e., do-  This paper makes the following contributions:
main names for which no IP addresses (or other resource
records) exist. In the remainder of this paper, we refer
to these domain names as NXDomains. The focus on
NXDomains is motivated by the fact that modern DGA-
bots tend to query large sets of domain names among
which relatively few successfully resolve to the IP ad-
dress of the C&C server. Therefore, to automatically
identify DGA domain names, Pleiades searches for rela-
tively large clusters of NXDomains that (i) have similar
syntactic features, and (ii) are queried by multiple po-
tentially compromised machines during a given epoch.
The intuition is that in a large network, like the ISP net-
work where we ran our experiments, multiple hosts may
be compromised with the same DGA-bots. Therefore,

e We propose Pleiades, the first DGA-based bot-
net identification system that efficiently analyzes
streams of unsuccessful domain name resolutions,
or NXDomains, in large ISP networks to automati-
cally identify DGA-bots.

e We built a prototype implementation of Pleiades,
and evaluated its DGA identification accuracy over
a large labeled dataset consisting of a mix of NX-
Domains generated by four different known DGA-
based botnets and NXDomains “accidentally” gen-
erated by typos or mis-configurations. Our experi-

each of these compromised assets will generate several
DNS queries resulting in NXDomains, and a subset of
these NXDomains will likely be queried by more than
one compromised machine. Pleiades is able to automat- e
ically identify and filter out “accidental”, user-generate
NXDomains due to typos or mis-configurations. When
Pleiades finds a cluster of NXDomains, it applies statis-
tical learning techniques to build a model of the DGA.
This is used later to detect future compromised ma-
chines running the same DGA and to detactive do-
main nameshat “look similar” to NXDomains resulting

ments demonstrate that Pleiades can accurately de-
tect DGA-bots.

We deployed and evaluated our Pleiades prototype
in a largeproductionISP network for a period of 15
months. Our experiments discovered twelve new
DGA-based botnets and enumerated the compro-
mised machines. Half of these new DGAs have
never been reported before.

The remainder of the paper is organized as follows.

from the DGA and therefore probably point to the botnet|n Section 2 we discuss related work. We provide an

C&C server’s address.

overview of Pleiades in Section 3. The DGA discovery

Pleiades has the advantage of being able to discoveprocess is described in Section 4. Section 5 describes the

and model new DGAs without labor-intensive malware DGA classification and C&C detection processes. We
reverse-engineering. This allows our system to detecelaborate on the properties of the datasets used and the
new DGA-bots before any sample of the related malwarevay we obtained the ground truth in Section 6. The ex-
family is captured and analyzed. Unlike previous work perimental results are presented in Section 7 while we
on DNS traffic analysis for detecting malware-related [4] discuss the limitations of our systems in Section 8. We
or malicious domains in general [3, 6], Pleiades lever-conclude the paper in Section 9.



2 Related Work services use DNS with short time-to-live (TTL) values.

Dynamic domain generation has been used by maltowever, their second approach yielded better detection
ware to evade detection and complicate mitigation, e.g.and identified suspicious C&C domains.
Bobax, Kraken, Torpig, Srizbi, and Conficker [26]. To Pleiades differs from the approaches described above
uncover the underlying domain generation algorithmin the following ways.(A) Our work models five differ-
(DGA), researchers often need to reverse engineer thent types of bot families including Conficker, Murofet,
bot binary. Such a task can be time consuming and reSinowal, and BobaxB) We model these bot families us-
quires advanced reverse engineering skills [18]. ing two clustering techniques. The first utilizes the distri

The infamous Conficker worm is one of the most ag-bution of the characters and 2-grams in the domain name.
gressive pieces of malware with respect to domain namédhe second relies on historical data that shows the rela-
generation. The “C” variant of the worm generated tionship between hosts and domain nan{€y.We build
50,000 domains per day. However, Conficker-C only@ classification model to predict the maliciousness of do-
queried 500 of these domains every 24 hours. In oldefnains that deviate from the two clustering techniques.
variants of the worm, A and B, the worm cycled through ~ Unlike previous work, our approach does not require
the list of domains every three and two hours, respecactive probing to maintain a fresh list of legitimate do-
tively. In Conficker-C, the length of the generated do-mains. Our approach does not rely on external reputa-
mains was between four and ten characters, and the déion databases (e.g., DNSBLs); instead, it only requires
mains were distributed across 110 TLDs [27]. access to local DNS query streams to identify new clus-

Stone-Gross et al. [34] were the first to report on do-ters of DGA NXDomains. Not only does our approach
main fluxing. In the past, malware used IP fast-fluxing, identify new DGAs, but it also builds models for these
where a Sing|e domain name pointed to several IP adDGAS to Classify hosts that will generate similar NXDo-
dresses to avoid being taken down easily. However, ifnains in the future. Furthermore, among the list of iden-
domain fluxing malware uses a domain generation alfified domains in the DGAs, our approach pinpoints the
gorithm to generate several domain names, and then at&C domains. Lastly, we note that our work is comple-
tempt to communicate with a subset of them. The aunentary to the larger collection of previous research that
thors also analyzed Torpig’s DGA and found that theattempts to detect and identify malicious domain names,
bot utilizes Twitter's API. Specifically, it used the sec- €-9-, [3,4].
ond character of the most popular Twitter search and
generated a new domain every day. It was updated t@ System Overview
use the second character of tH& most popular Twitter In this section, we provide a high-level overview of

search. Srizbi [40] is another example of a bot that uti-5,r pGA-bot detection system Pleiades. As shown in
lizes a DGA by using unique magic number. Researchergigure 1, Pleiades consists of two main moduleBGA

identified several unique magic numbers from m““ip'eDiscoverymodule and DGA Classification and C&C
copies of the bot. The magic number is XOR'ed with the petectionmodule. We discuss the roles of these two
current date and a different set of domains is generateq,5in modules and their components, and how they are
Only the characters "gwertyuiopasdf’are usedgeq in coordination tactively learnand update DGA-

in the generated domain names. o bot detection models. We describe these components in
Yadav et. al. proposed a technique to identify botnetsygre detail in Sections 4 and 5.

by finding randomly generated domain names [42], and
improvements that also include NXDomains and tempo-3.1 DGA Discovery
ral correlation [43]. They evaluated their approaches by The DGA Discoverymodule analyzes streams of un-
automatically detecting Conficker botnets in an offline successful DNS resolutions, as seen from “below” a local
dataset from a Tier-1 ISP in South Asia in the first paper DNS server (see Figure 1). AllNXDomains generated by
and both the ISP dataset and a university’s DNS logs imetwork users are collected during a given epoch (e.g.,
the second. one day). Then, the collected NXDomains are clustered
Villamarin-Salomon and Brustoloni [37] compared according to the following two similarity criteria: (1) the
two approaches to identify botnet C&Cs. In their first domain name strings have similar statistical characteris-
approach, they identified domains with high query rategics (e.g., similar length, similar level of “randomness”,
or domains that were temporally correlated. They usedimilar character frequency distribution, etc.) and (2) th
Chebyshev's inequality and Mahalanobis distance tadomains have been queried by overlapping sets of hosts.
identify anomalous domains. In their second approachThe main objective of this NXDomain clustering process
they analyzed recurring “dynamic” DNS replies with is to group together domain names that likely are auto-
NXDomain responses. Their experiments showed thainatically generated by the same algorithm running on
the first approach was ineffective, as several legitimatanultiple machines within the monitored network.
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Figure 1: A high level overview of Pleiades.

Naturally, because this clustering step is unsupervisedbelow” the local recursive DNS server.
some of the output NXDomain clusters may contain Given a subset of NXDomains generated by a ma-
groups of domains that happen to be similar by chancehine, we extract a number of statistical features related
(e.g., NXDomains due to common typos or to mis-to the NXDomain strings. Then, we ask tB&A Clas-
configured applications). Therefore, we apply a subsesifier to identify whether this subset of NXDomains re-
quent filtering step. We use a supervid2@A Classifier sembles the NXDomains generated by previously dis-
to prune NXDomain clusters that appear to be generatedovered DGAs. That is, the classifier will either label the
by DGAs that we have previously discovered and mod-subset of NXDomains as generated by a known DGA,
eled, or that contain domain names that are similar tar tell us that it does not fit any model. If the subset
popular legitimate domains. The final output of DEA  of NXDomains is assigned a specific DGA label (e.g.,
Discoverymodule is a set of NXDomain clusters, each DGA-Conficker.C ), the host that generated the NX-
of which likely represents the NXDomains generated byDomains is deemed to be compromised by the related
previously unknown or not yet modeled DGA-bots. DGA-bot.

o ) Once we obtain the list of machines that appear to be

3.2 DGA Classification and C&C Detection compromised with DGA-based bots, we take detection

Every time a new DGA is discovered, we use a su-one step further. While all previous steps focused on NX-
pervised learning approach to build models of what theDomains, we now turn our attention to domain names for
domains generated by this new DGA “look like”. In par- which we observe valid resolutions. Our goal is to iden-
ticular, we build two different statistical models: (1) a tify which domain names, among the ones generated by
statistical multi-class classifier that focuses on assignthe discovered DGA-based bots, actually resolve into a
ing a specific DGA label (e.gDGA-Conficker.C )  valid IP address. In other words, we aim to identify the
to theset of NXDomaingenerated by a host and (2)  botnet’s active C&C server.
a Hidden Markov Model (HMM) that focuses on finding  To achieve this goal, we consider all domain names
single active domain namegieried byh; that are likely  that are successfully resolved by hosts which have been
generated by a DGA (e.gDGA-Conficker.C ) run-  classified as running a given DGA, sew-DGA-vX,
ning on the host, and are therefore gmashdidate C&C by theDGA Classifier Then, we test these successfully

domains resolved domains against an HMM specifically trained
The DGA Modeling component receives differ- to recognize domains generated dgw-DGA-vX. The

ent sets of domains labeled asgitimate (i.,e., HMM analyzes the sequence of characters that compose

“non-DGA"), DGA-Bobax, DGA-Torpig/Sinowal ,  a domain namel, and computes the likelihood thdtis

DGA-Conficker.C , New-DGA-v1l, New-DGA-v2,  generated bjNew-DGA-vX.

etc., and performs the training of the multi-claB&A We use an HMM, rather than tH@GA Classifier be-

Classifierand the HMM-base€&C Detectionmodule.  cause for the C&C detection phase we need to classify
The DGA Classificationmodule works as follows. single domain name§heDGA Classifielis not suitable

Similar to theDGA Discoverymodule, we monitor the for this task because it expects as inpatsof NXDo-

stream of NXDomains generated by each client machinenains generated by a given host to assign a label to the



DGA-bot running on that host. Some of the features use®) to theDGA Modelingmodule, which will update (i.e.,
by theDGA Classifiercannot be reliably extracted from re-train) theDGA Classifiercomponent.

a single domain name (see Sections 4.1.1 and 5.2). . .
4.1 NXDomain Clustering

: We now describe theiXDomain Clusteringnodule in
4 DGA Discovery detail. First, we introduce the statistical features Plesa

; dbv h . ; q kuses to translate small sets of NXDomains into feature
NXDomains generated by hosts in a monitored networky e cors and then discuss how these feature vectors are
and in acompletely unsupervisegay, clusters NXDo- clustered to find similar NXDomains.

mains that are being automatically generated by a DGA.

We achieve this goal in multiple steps (see Figure 1)4.1.1 Statistical Features

First (Step J, we collect sequences of NXDomains gen-  To ease the presentation of how the statistical features
erated by each host during an ep&thAfterwards Step  are computed, we first introduce some notation that we
2), we split the overall set of NXDomains generated bywill be using throughout this section.

all momtored h.os:ts into small subsets, and trar)slate eachyfinitions and Notation A domain named con-

set into a statistical feature vector (see Section 4.1.1)SistS of a set of labels separated by dots, e.g.

We then apply the_ X-means _clustering algorithm [24] to_www.example.com . The rightmost label is called
group these domain subsets into larger clusters of domaip, top-level domain (TLD or TLD(d)), e.g., com
names that have similatring-basec:haracteristics. The second-leveldomain (2LD or :LI’D(dj)”repre.—

Separately§tep 3, we cluster the NXDomains based sents the two rightmost labels separated by a period,

on a completely different approach that takes into ac g., example.com The third-level domain (3LD

count Whether two NXDomalns are l?elng .quer_led byor 3LD(d)) contains the three rightmost labels, e.g.,
overlapping sets of hosts. First, we build a biparitest www.example.com , and so on

associatiorgraph in which the two sets of vertices repre- We will often refer to splitting a sequendeX —
sent distinct hostg and distinct NXDomains, re.spectively.{dlvdzam?dm} of NXDomains into a number of
A hpst vertexVy, is connected _to an N?(Domam vertex subsequences (or subsets) of length NX —
Vi, if host hi queried NXDomaim;. This allows us to (dr, i1,y Or a1}, Wherer — a(k— 1) + 1 andk —
identify different NXDomains that have been queried by ; 2’ L;JJ _’ Subscri,pik indicates the-th subsequence
overlapping sets of hosts. Intuitively, if two NXDomains o;‘ Iénéthaa in the sequence oh NXDomainsNX. Each

are queried by multiple common hosts, this indicates thal')f the NX, domain sequences can be translated into a

the querying hosts may be running the same DGA. Wefeature vector. as described below.

can then leverage this definition of similarity between ;
NXDomains to cluster them (see Section 4.1.3). n-gram Features Given a subsequendeX of a NX-

These twadistinct viewsof similarities among NXDo- ~ Domains, we measure the frequency distributiomof
mains are then reconciled incuster correlationphase ~ 9rams across the domain name strings, with 1,..,4.
(Step 4. This step improves the quality of the final NX- FOr example, fom =2, we compute the frequency of
Domains clusters by combining the clustering results ob£ach 2-gram. At this point, we can compute the median,
tained inStep 2and Step 3 and reduces possible noise average and standard deviation of the ob_ta_lned distribu-
introduced by clusters of domains that may appear simtion of 2-gram frequency values, thus obtaining three fea-

ilar purely by chance, for example due to similar typostures. We do this for each valuewt= 1,...,4, producing
originating from different network users. 12 statistical features in total. By measuring the median,

The final clusters represent different groups of NX-average and standard devigtio'n, we are trying to capture
Domains, each containing domain names that are highl{€Shapeof the frequency distribution of the-grams.
likely to be generated by the same DGA. For each of Entropy-based Features This group of features com-
the obtained NXDomain clusters, the question remainputes the entropy of the character distribution for sep-
if they belong to a known DGA, or a newly discovered arate domain levels. For example, we separately com-
one. To answer this questioBtep 3, we use thddGA  pute the character entropy for the 2LDs and 3LDs ex-
Classifierdescribed in Section 5.2, which is specifically tracted from the domains iNX,. To better understand
trained to distinguish between sets of NXDomains gen-how these features are measured, consider B Xegof
erated by currently known DGAs. Clusters that matcha domains. We first extract the 2LD of each domain
previously modeled DGAs are discarded. On the othed; € NX, and for each domain we compute the entropy
hand, if a cluster of NXDomains does not resemble anyH (2LD(d;)) of the characters of its 2LD. Then, we com-
previously seen DGAs, we identify the cluster of NXDo- pute the average and standard deviation of the set of val-
mains as having been generated by a new, previously unies{H(2LD(d;))}i—1..q. We repeat this for 3LDs and
known DGA. These NXDomains will then be setép  for the overall domain name strings. We measure a total

The DGA Discoverymodule analyzes sequences of



of six features, which capture the “level of randomness’
in the domains. The intuition is that most DGAs pro-
duce random-looking domain name strings, and we want
to account for this characteristic of the DGAs.

INPUT : Sparse matritm e 0"k, in which the rows represen

| hosts and the columns represkiNXDomains.

|
[1]: NormalizeM: Vj=1,..k 5 Mj;=1
i=1

[2] : Compute the similarity matri&from M: S=MT - M
[3] : Compute the firsp eigenvectors frons by
eigen-decomposition.

Structural Domain Features This group of features
is used to summarize information about the structure of
the NXDomains inNX, such as their length, the num-
ber of unique TLDs, and the number of domain levels.
In total, we compute 14 features. Specifically, given
NX, we compute the average, median, standard devi-
ation, and variance of the length of the domain names
(four features), and of the number of domain levels (four
features). Also, we compute the number of distinct char:
acters that appear in these NXDomains (one feature), the QUTPUT: Clusters of NXDomains _
number of distinct TLDs, and the ratio between the num- Algorithm 1 Spectral clustering of NXDomains.
ber of domains under theom TLD and the number of

domains that use other TLDs (two features). The remain-

ing features measure the average, median, and standalféft query only one NXDomain to reduce the dimension-

deviation of the occurrence frequency distribution for the@lity of the matrix, since they are extremely unlikely to
different TLDs (three features). be running a DGA given the low volume of NXDomains

they produce. Let a matrix elemekt; j = O, if hosth;

4.1.2 Clustering using Statistical Features did not query NXDomaim;. Conversely, leM; ; = w; if

To find clusters of similar NXDomains, we proceed ashi did queryn;j, wherew; is a weight.
follows. Given the sell X of all NXDomains that we ob- All non-zero entries related to a hdstare assigned
served from all hosts in the monitored network, we splitthe same weight; ~ &, wherek; is the number of NX-
NX into subsets of size, as mentioned in Section 4.1.1. Domains queried by hosk. Clearly,M can be seen as a
Assumingm is the number of distinct NXDomains in representation of a bipartite graph, in whichast ver-
NX, we splitthe seNX into | '] different subsets where tex \; is connected to aNXDomains vertex;y with an
o =10. edge of weighty; if host hj queried NXDomaim; dur-

For each of the obtained substX, of NX, we com-  ing the epoch under consideration. The intuition behind
pute the aforementioned 33 statistical features. After wéhe particular method we use to compute the weights
have translated eaddX into its corresponding feature is that we expect that the higher the number of unique
vector, we apply the X-means clustering algorithm [24]. NXDomains queried by a host (i.e., the highek;) the
X-means will group theN X, into X clusters, where& is less likely the host is “representative” of the NXDomains
automatically computed by an optimization process in-it queries. This is in a way analogous to iheerse doc-
ternal to X-means itself. At this point, given a cluster ument frequencysed in the text mining domain [1, 7].

LetU e OP*K be the matrix containing vectorsuy, ..., uy of size
p resulting from the eigen-decomposition®f

(a vecton; is a reducegb-dimensional representation of théh
NXDomain).

[4] : Cluster the vectors (i.e., the NXDomains) }i—1_k using
the X-means algorithm

C = {NXc}k=1.1 of | NXDomain subsets, we simply take
the union of theN X, in C as an NXDomain cluster.

4.1.3 Clustering using Bipartite Graphs

OnceM is computed, we apply a graph partitioning
strategy based on spectral clustering [21, 22], as sum-
marized in Algorithm 1. As a first step, we compute
the first p eigenvectors oM (we usep = 15 in our

Hosts that are compromised with the same DGA-experiments), and then we map each NXDomain (each
based malware naturally tend to generate (with highcolumn of M) into a p-dimensional vector. In effect,
probability) partially overlapping sets of NXDomains. this mapping greatly reduces the dimensionality of the
On the other hand, other “non-DGA’ NXDomains are NXDomain vectors from the total number of hosts (the
unlikely to be queried by multiple hosts. For example, number of rows irM) to p. We then used the obtained
it is unlikely that multiple distinct users make identical p-dimensional NXDomain representations and apply X-
typos in a given epoch. This motivates us to considemeans to cluster the NXDomains based on their “host as-
NXDomains that are queried by several common hosts asociations”. Namely, NXDomains are grouped together
similar, and in turn use this similarity measure to clusterif they have been queried by a similar set of hosts.
NXDomains that are likely generated by the same DGA.

To this end, we build a sparse association mattix ~4.1.4 Cluster Correlation
where columns represent NXDomains and rows repre- We now have two complementary views of how the
sent hosts that query more than two of the column NX-NXDomains should be grouped based on two different
Domains over the course of an epoch. We discard hostdefinitions of similarity between domain names. Nei-



ther view is perfect, and the produced clusters may stillcluster is too noisy when the majority label among the
contain noise. Correlating the two results helps filter thel® k = 1,..n was assigned to less th#a; = 75% of
noise and output clusters of NXDomains that are morehe n domain subsets. The clusters that do not pass the
likely to be generated by a DGA. Cluster correlation is 6ma; “purity” threshold will be discarded. Furthermore,
performed in the following way. NXDomain clusters whose majority label is thegit-

Let o = {A4,..,An} be the set of NXDomain clus- imate label will also be discarded.

ters obtained by using statistical features, as described For each remaining cluster, we perform an additional

in Section 4.1.2, ané = {By, .., Bm} be the set of NX-  «prity” check. Let the majority label for a given cluster
Domain clusters derived from the bipartite graph partl-ILj bel*. Among the Se{{(|t,5t)}t(i)1_.c}k=1..n we take all

tlo?mt% apﬂroacht.dsckl;stsed n S”eCt'on.b‘}'l‘&. Wef C?mfhe scores whose relatedy = 1*. That is, we take the
pute the intersection between all possible pairs of ClUSe,hdgence score assigned by the classifier to the domain
terslij=ANBj, fori=1,.,nandj=1,..m Al

correlated clusterk ; that contain less than a predefined subsets thathave been labeletfaand then we compute
D . h he vari 2(s) of th
numberA of NXDomains (i.e. [l j| < A) are discarded, the average(s;) and the variance™ (s of these scores

while the remaining correlated clusters are passed to th notice that the scoresare inf0, 1)). We discard clusters
e . . . hoseo?(s) is greater than a predefined threshjd=
DGA filtering module described in Section 4.2. Clusters sea’(s)isg P :

that t sufficient d by the t lust 0.001, because we consider the domains in the cluster as
that are not sutliciently agreed upon by the two clusters, ,, beingsufficiently similarto the majority label class.
ing approaches are not considered for further processing.

We empirically sefA = 40 in preliminary experiments. At this point, if (s;) < 6y, with 6, = 0.98, we deem
o the NXDomain cluster to be not similar enough to the
4.2 DGA Filtering majority label class, and instead we label it as “new

The DGA filtering module receives the NXDomain DGA’ and pass it to th&®GA Modelingmodule. On the
clusters from the clustering module. This filtering stepother hand, ifu(s) > 6,, we confirm the majority label
compares the newly discovered NXDomain clusters toclass (e.g.DGA-Conficker.C ) and do not consider it
domains generated by known DGAs that we have al{further.
ready discovered and modeled. If the NXDomains in the particular choice for the values of the above men-

a correlated clustel ; are classified as being generated ijoed thresholds are motivated in Section 7.2.
by a known DGA, we discard the clustgr;. The rea-

son is that the purpose of tiBGA Discoverymodule is
to find clusters of NXDomains that are generated (with - _
high probability) by a new, never before seen DGA. At5 DGA Classification and C&C Detection

the same time, this filtering step is responsible for deter- .o 2 new DGA is reported by tHRGA Discov-

mining if a gluster .Of NXDomains is too noisy, i.e.,_ it it ery module, we use a supervised learning approach to
likely cgntams amix of DGA and “non-pQA” domams. learn how to identify hosts that are infected with the re-

_ Tothis end, we leverage t#GA Classifierdescribed 404 pGa-based malware by analyzing the set of NX-
in detail in Section 5. At a high level, we can treat the 5o ains they generate. To identify compromised hosts,
DGA CIaSS|_f|erasafunct|on thattakes asinputaléd | o qjiect the set of NXDomainsiX, generated by a

of NXquams, and outputs aset_ of tumm"s‘)}t:l--?' host, hj, and we ask th®GA ClassifierwhetherNX
wherel; is a label (e.0.DGA-Conficker.C ), ands is likely “belongs” to a previously seen DGA or not. If the

a score that indicates how confident the classifier is O hswer is yesh; is considered to be compromised and

attributing labell; to NX, andc is the number of dif- i he |abeled with the name of the (suspected) DGA-
ferent classes (and labels) that th&A Classifiercan bot that it is running

rec\:zﬂglnzc;.]e DGA filtering module receives a new cor- In addition, we gim to bu.ild a classifier that can ana-
related cluster of NXDomains; j, it splits the clus- YZ€ the set of active domain names, $yy,, resolved
ter into subsets olr NXDomains, and then passes PY @ compromised ho and reduce itto a smaller sub-
each of these subsets to tHEGA Classifier As- S€tCCh C ADy of likely C&C domains generated by
sumel; j is divided inton different subsets. From the the DGA running onh. Finally, the selCC, may be
DGA Classifier we obtain as a resuh sets of tuples manufally inspected to confirm the |dent|f|pat|on of C&C

( )}(1) { )}(2) { )}(n) } domain(s) and related IPs. In turn, the list of C&C IPs
Hes) b2y o {630 121 oo 1068) hmp o « may be used to maintain an IP blacklist, which can be

First, we consider for each set of tuplede, s) 2y employed to block C&C communications and mitigate
with k=1,..,n, the label ¥ that was assigned the max- the effects of the malware infection. We now describe
imum score. We consider a cluste as too noisy if  the components of the DGA classification and C&C de-
the related label$® are too diverse. Specifically, a tection module in more detail.



5.1 DGA Modeling host in the monitored network and periodically send this

As mentioned in Section 4.2, the NXDomain clustersinformation to theDGA Classifier Given a setNX,
that pass théGA Filtering and do not fit any known ©0f NXDomains generated by holst we splitNX into
DGA model are (automatically) assignedNaw-DGA-  subsets of lengtiw, and from each of these subsets we
vX label, whereX is a unique identifier. At this point, €Xxtract a number of statistical features, as described in
we build two different statical models representative ofSection 4.1.1 If one of these subsets of NXDomains is
New-DGA-vX: (1) a statistical multi-class classifier that labeled by theDGA Classifieras being generated by a
can assign a specific DGA label to the set of NXDomainsdiven DGA, we mark hodt; as compromised and we add
generated by a ho$t and (2) a Hidden Markov Model its IP address and the assigned DGA label to a malware
(HMM) that can compute the probability that a single detection report.
activedomain queried by, was generated by the DGA )
running on the host, thus producing a listandidate °-3 C&C Detection
C&C domains The C&C Detection module is based on Hidden
The DGA Modelingmodule takes as input the follow- Markov Models (HMM) [28]. We use one distinct HMM
ing information: (1) a list of popular legitimate domain Per DGA. Given the selX; of domains generated by
names extracted from the top 10,000 domains according DGA &, we consider each domaith € NX; sepa-
to alexa.com ; (2) the list of NXDomains generated rately, and feed these domains to an HMM for training.
by running known DGA-bots in a controlled environ- The HMM sees the domain names simply as a sequence
ment (see Section 6); (3) the clusters of NXDomains re-Of characters, and the result of the training is a model
ceived from theDGA Discoverymodule. LetNX be one  HMMg that given a new domain nangein input will
such newly discovered cluster of NXDomains. Becauseoutput the likelihood thas was generated by
in some caseblX may contain relatively few domains, =~ We useleft-to-right HMM as they are used in prac-
we attempt to extend the shiX to a larger seNX' that  tice to decrease the complexity of the model, effectively
can help build better statistical models for the new DGA. mitigating problems related to under-fitting. The HMM’s
To this end, we identify all hosts that “contributed” to emission symbols are represented by the set of characters
the NXDomains clustered iNX from our sparse asso- allowed in valid domain names (i.e., alphabetic charac-
ciation matrixM and we gather all the NXDomains they ters, digits, ', *-’, and ‘). We set the number of hidden
generated during an epoch. For example, for a given hosttates to be equal to the average length of the domain
h; that generated some of the domains clusteredXy  names in the training dataset.
we gather all the other NXDomains domaIng’1i gen- During operation, th€&C Detectionmodule receives
erated byh;. We then add the s&X' = ; N>qgi tothe active domain names queried by hosts that have been pre-
training dataset (marked with the appropriate new DGAVviously classified by th&©GA Classifieras being com-
label). The reader may at this point notice that the sepromised with a DGA-based malware. ltgbe one such
NX/, may contain not only NXDomains generated by ahost, andZ be the DGA running oh;. TheC&C Detec-
hosth; due to running a DGA, but it may also include tion module will send every domaisiresolved byh; to
NXDomains “accidentally’ generated By. Therefore, HMMg, which will compute a likelihood scoré(s). If
this may introduce some noisy instances into the trainingf (S) > 84, sis flagged as a good candidate C&C domain
dataset. However, the number of “accidental” NXDo- for DGA Z.
mains is typically very small, compared to the number of The thresholdd,; can be learned during the training
NXDomains generated by a DGA. Therefore, we rely onphase. First, we train the HMM with the 9¢X,. Then,
the generalization ability of the statistical learningalg we use a sek of legitimate “non-DGA’ domains from
rithms we use to smooth away the effects of this potentiaAlexa. For each domaine L, we compute the likelihood
source of noise. This approach works well in practice, asf (1) and set the thresholfl; so to obtain a maximum
we will show in Section 7. target false positive rate (e.g., max FPs=1%).

5.2 DGA Classifier

The DGA Classifieris based on a multi-class version 6 Data Collection
of the Alternating Decision Trees (ADT) learning algo-  In this section we provide an overview of the amount
rithm [9]. ADT leverages the high classification accu- of NXDomain traffic we observed during a period of fif-
racy obtained by Boosting [17], while producing com- teen consecutive months (our evaluation period), start-
pact classification rules that can be more easily intering on November ¥, 2010 and ending on January,5
preted. 2012. Afterwards, we discuss how we collected the do-

To detect hosts that are compromised with DGA-basednain names used to train and test @BA Classifier
malware, we monitor all NXDomains generated by each(see Section 5).
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Figure 2: Observations from NXDomain traffic collected below a set d¥ I8cursive DNS servers over a 439 day window.

6.1 NXDomain Traffic columns).

We evaluated Pleiades over a 15-month period againsé > Ground Truth
DNS traffic obtained by monitoring DNS messages )
to/from a set of recursive DNS resolvers operated by a In oLder to ger:era’;fe_ the gro_und fruth to traug and_eval-
large North American ISP. These servers were physicall)}late theDGA Classifier(Section 5), we used a sim-

located in the US, and served (in average) over 2 miIIionEIe apprc();acht; TodcoIIe_I-ct the NXDo?ainsd_gﬁenerated Ey
client hosts per ddy Our monitoring point was “below” nown DGA-based malware we used two different meth-

the DNS servers, thus providing visibility on the NXDo- ods. 'First, because the DGA used by differgnt variants of
mains generated by the individual client hosts. Conficker and by Murofet are known (derived through

Figure 2(a) reports, per each day, (1) the number 0{everse-engineering), we simply used the respective al-
: N p gorithms to generate a set of domain names from each
NXDomains as seen in tiraw DNS traffic, (2) the num-

ber of distinct hosts that in the considered day query ag :;?:;iboégﬁgs).( ;ﬁg%ﬁ:gﬁ;awﬁigeéggosné ,Io\n;gf:_
least one NXDomains, and (3) the number of distinct y ’ 9

(de-duplicated) NXDomains (we also filter out domain rithm is not known (at least not to us), we simply ex-

: . ecuted two malware samples (one per botnet) in a VM-
names that do not have a valid effective TLD [15, 19’20])'based malware analysis framework that only allows DNS

The abrupt drop in the number of NXDomains and hOStstrafricz while denying any other type of traffic. Over-

(roughly a 30% reduction) experienced between 2011- ) .
03-24 and 2011-06-17 was due to a configuration changa” we collected 30,000 domains generated by Conficker,

at the ISP network. 56,078 from Murofet, 1,283 from Bobax and, 1,783 from

Sinowal.

On average, we o_bs_erved about 5 m|II|9ns (raw) NX- Finally, we used the top 10,000 most popular domains
Domams,_ 187,600 distinct hc_)st.s that querleq at least Onﬁccording toalexa.com , with and without themww.
NXDomains, and 360,700 distinct NXDQmalns overall, refix. Therefore, overall we used 20,000 domain names
ber each d.al\y/.l Theorlefore, ';he average IS'Z|e of the a(SSO({?é represent the “negative” (i.e., “non-DGA") class dur-
ation matrixM used to perform spectral clustering (see. L : Pps
Section 4.1.3) was 187,600 360,700, However, itis "9 e raining and testing of tMBGA Classifier
worth noting thaiM is sparse and can be efficiently stored
in memory. In fact, the vast majority (about 90%) of 7 Analysis
hosts query less than 10 NXDomains per day, and there- In this section, we present the experimental results of
fore most rows inM will contain only a few non-zero our system. We begin by demonstrating Pleiades’ mod-
elements. This is shown in Figure 2(b), which reportseling accuracy with respect to known DGAs like Con-
the cumulative distribution function (CDF) for the vol- ficker, Sinowal, Bobax and Murofet. Then, we elaborate
ume of NXDomains queried by a host in the monitoredon the DGAs we discovered throughout the fifteen month
network. On the other hand, Figure 2(c) shows the CDANXDomain monitoring period. We conclude the section
for the number of hosts that query an NXDomain (thisby summarizing the most interesting findings from the
relates directly to the sparsenesshbfaccording to its  twelve DGAs we detected. Half of them use a DGA al-
gorithm from a known malware family. The other half,

1We estimated the number of hosts by computing the average num-
ber of distinct client IPs seen per day. 2We only allowedUDP port 53 .




Table 1: Detection results (in %) using 10-fold cross validation sion between the classes was observed in the datasets
for different values ofx. . . -

that contained separate Conficker classes, specifically
between the classes of Conficker-A and Conficker-B. To

[ | a=5NXDomains [ o =10NXDomains | . ) s
[Clss | TRac FPae AUC | TRac FPme AUC | address this problem, we created a generic Conficker
class that had an equal number of vectors from each Con-

Bobax 95 0.4 97 99 0 99 fick i hi : ¢ th fick .
Conficker | 98 14 08 99 01 99 ficker variant. This merging of the Conficker variants
Sinowal 99 0.1 98 100 0 100 into a single “super” class allowed the DGA classifier
Murofet 98 0.7 98 99 0.2 99 to correctly classify 99.72% (Table 1) of the instances
Benign 96 07 97| 9 01 99 (7,986 correctly classified vs 22 incorrectly classified).

Using the datasets with the five classes of DGAs, the
weighted average of thERgtes andF Pates Were 99.7%
to the best of our knowledge, ham® known malware and 0.1%, respectively. As we see in Tabler:: 5 per-
association. forms reasonably well, but with a higher rate of FPs.

7.1 DGA Classifier's Detection Results 7.2 NXDomain Clustering Results

In this section, we present the accuracy of the DGA N this section, we will discuss results from the DGA
classifier. We bootstrap the classifier with NXDo- discovery module. In particular, we elaborate on the se-
mains from Bobax, Sinowal, Conficker-A, Conficker-B, lection of the thresholds used, the unique clusters identi-
Conficker-C and Murofet. We test the classifier in two fied and the false alerts the DGA discovery module pro-
modes. The first mode is bootstrapped with a “superduced over the duration of our study.

Corfcecass composed fan el rmberof PR 2. Corclaon Tveshods
and another with each Conficker variant as its own class, ' Order to set the thresholdins; and b, defined

. . . .. ._In Section 4.2, we spent the first five days of Novem-
As we mentioned in Section 5.2, the DGA classifier IS ber 2010 labeling the 213 produced clusters as DGA re-

based on a multi-class version of the Alternating Deci- . : : . :
. . : ) lated (Positive) or noisy (Negative). For this experiment,
sion Trees (ADT) learning algorithm [9]. We build the . . o
we included all produced clusters without filtering out

vectors for each class by_ cqllectmg NXDon_1a|ns from those with6,=98% (or higher) “similarity” to an already
one day of Honeypot traffic (in the case of Sinowal and . . .
. known one (see Section 4.2). In Figure 3, we can see in
Bobax) and one day of NXDomains produced by the . .
the Y-axis the percentage values for the dominant (non-

DGAs for Conficker-A, Conficker-B, Conficker-C and benign) class in every cluster produced during these five
Murofet. Finally, the domain names that were used to 9 y P 9

represent the benign class were the first 10,000 Alex days. In the X-axis we can see the variance that each
P X . 9 . S %ominant class had within each cluster. The results show
domain names with and without tkevw. child labels.

E h d . . h of the cl that the Positive and Negative assignments had a clear
rom the raw domain names In each of e ClasseS, + \yhich we can achieve by setting the thresholds as
we randomly selected 3,000 sets of cardinadity As a

= 0, =
reminder, the values af that we used were two, five, 6inaj = 75% andf = 0.001. These thresholds gave us

: L - very good results throughout the duration of the experi-
ten and 30. This was to build different training dataset%e)r/]tg As we will discugs in Section 7.2.3. the DGA%is-
in order to empirically decide which value of would ) N

. ) covery module falsely reported only five benign clusters
provide the best separation between the DGA models. y y rep y d

- : over a period of 15 months. All falsely reported clusters
We generated additional testing datasets. The domaifsq variance very close to 0.001.

names we used in this case were from each class as in
the case of the training dataset but we used different days..2.2 New DGAs
We do that so we get the minimum possible domain name Pleiades began clustering NXDomain traffic on the
overlap between the training and testing datasets. Weirst day of November 2010. We bootstrapped the DGA
evaluate the training datasets using two methods: 10-folghodeler with domain names from already known DGAs
cross validation on theraining datasetand by using the and also a set of Alexa domain names as the benign class.
testing datasets computed from domains collectedifen  |n Table 2, we present all unique clusters we discovered
ferent days Both methods gave us very similar results. throughout the evaluation period. The “Malware Fam-
Our system performed the worst in the case of the 10ily” column simply maps the variant to a known mal-
fold cross validation, therefore we chose to present thisvare family if possible. We discover the malware family
worst-case scenario. by checking the NXDomains that overlap with NXDo-
In Table 1, we can see the detection results using twanains we extracted from traffic obtained from a malware
values fora, five and ten. We omit the results for the repository. Also, we manually inspected the clusters with
other values due to space limitations. The main confuthe help of a security company’s threat team. The “First
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Figure 3: Thresholdsfmaj and 8, from the first five days of Figure 4: A sample of ten NXDomain for each DGA cluster that
November 2010. we could not associate with a known malware family.

Seen” column denotes the first time we saw traffic fromis worth noting the New-DGA-v1 had an average of 19
each DGA variant. Finally, the “Population on Discov- hosts per day, the most populous of the newly identified
ery” column shows the variant population on the discov-DGAs.

ery day. We can see that we can detect each DGA variant

with an average number of 32 “infected hosts” across the -2-3  False Reports on New DGAs

entire statewide ISP network coverage. Dgring our evaluation period we came across five cat-
egories of clusters falsely reported as new DGAs. In all
Table 2: DGAs Detected by Pleiades. of the cases, we modeled these classes in the DGA mod-
: eler as variants of the benign class. We now discuss each
| | . Population case in detail.
Malware Family | First Seen| on Discovery The first cluster of NXDomains falsely reported by
Shiz/Simda-C [32]|  03/20/11 37 Pleiades were random domain names generated by
Bamital [11] 04/01/11 175 Ch 16.45]. Each ti the G le Ch b
BankPatch [5] 04/01/11 o8 rome [ ] ]. Each time the Google rome browser
Expiro.Z [8] 04/30/11 7 starts, it will query three “random looking” domain
Boonana [41] 08/03/11 24 names. These domain names are issued as a DNS check,
Zeus.v3 [25] 09/15/11 39 so the browser can determine if NXDomain rewriting is
New-DGA-v1 01/11/10 12 bled. The “Ch DGA’ d ;
New-DGA-v2 01/18/11 10 enabled. e rome was reported as a vari-
New-DGA-v3 02/01/11 18 ant of Bobax from Pleiades. We trained a class for this
New-DGA-v4 03/05/11 22 DGA and flagged it as benign. One more case of test-
New-DGA-v5 04/21/11 5 ing for NXDomain rewriting was identified in a brand of
New-DGA-v6 11/20/11 10 ; ) ) :
wireless access points. Connedlifpffers wireless hot-

. . _ _spot functionality and one of their configuration option
As we see in Table 2, Pleiades reported six vari-enables the user to hijack the ISP’s default NXDomain
ants that belong to known DGA-enabled malware fami-rewriting service. The device generates a fixed number
lies [5,8, 11,25,32,41] Six more variants of NXDomains of NXDomains to test for rewriting_

were reported and modeled by Pleiades but for these, 10 T\wo additional cases of false reports were triggered
the best of our knowledge, no known malware can be aspy domain names fromthé and.edu TLDs. These
sociated with them. A sample set of 10 domain namegjomain names contained minor variations on common
for each one of these variants can be seen in Figure 4. \yords (i.e. repubblica, gazzetta, computer, etc.). Domain
In the 15 months of our observations we observed amhames that matched these clusters appeared only for two
average population of 742 Conficker infected hosts in tthays in our traces and never again. The very short lived
ISP network. Murofet had the second largest populatiorresence of these two clusters could be explained if the
of infected hosts at 92 per day, while the Boonana DGAjomain names were part of a spam-campaign that was
comes third with an average population of 84 infectedremediated by authorities before it became live.
hosts per day. The fastest growing DGA is Zeus.v3 with  Thg fifth case of false report originated from domain

an average population of 50 hosts per day, however, duliames under a US government zone and contained the
ing the last four days of the experiments the Zeus.v3

DGA had an average number of 134 infected hosts. It 3www.connectify.me




Table 3: TPs (%) for C&C detection (1,000 training sequences). (> 78%) in five out of six cases. At FP=3% we have high
=) TP rate & 91%) in five out of six cases.
botnet 01 [ 05 1 [ 3 [ 5 [ 10 As mentioned in Section 3, tHe&C Detectionmod-
Zeus.v3 990 ] 990 ] 999 | 999 | 999 | 999 ule reduces the set of domain names successfully re-
Expiro.Z || 33.03 | 64.56 | 78.23 | 91.77 | 95.23 | 98.67 solved by a hosh that have been labeled as compro-
gﬁi’;‘“a' 180 11%3 211082 916028 188 188 mised with DGA-malware to a smaller set of gocah-
Boonana 38 | 1069 | 1559 | 27.67 | 35.05 | 48.43 didate C&C domaingenerated by the DGA. The results
BankPatch|| 56.21 | 70.77 | 93.18 | 99.9 | 99.91 | 99.94 in Table 3 show that if we rank the domains resolved by
h according to the likelihood assigned by the HMM, in
most cases we will only need to inspect between 1/100

stringwpdhsmp. Our best guess is that these are inter-to 3/100 of the active domains queried byo discover
nal domain names that were accidentally leaked to the rethe C&C.
cursive DNS server of our ISP. Domain names from this. .
: 7.4 Case Studies
cluster appeared only for one day. This class of NXDo-
mains was also modeled as a benign variant. It is wortH{ 41 Zeus.v3

noting that all falsely reported DGA clusters, excluding In September 2011, Pleiades detected a new DGA
the Chrome cluster, were short lived. If operators ardhat we linked to the Zeus.v3 variant a few weeks later.

willing to wait a few days until a new DGA cluster is The domain names collected from the machines compro-
reported by Pleiades, these false alarms would not hav@ised by this DGA-malware are hosted in six different

been raised. TLDs: .biz ,.com.info ,net ,org and.ru .Ex-
cluding the top level domains, the length of the domain
7.3 C&C Detection names generated by this DGA are between 33 and 45

To evaluate the effectiveness of tl&C Detection alphanumeric characters. By analyzing one sample of
we proceeded as follows. We considered the six newhe malwaré we observed that its primary C&C infras-
DGAs which we were able to attribute to specific mal- tructure is P2P-based. If the malware fails to reach its
ware, as shown in Table 3. LBtX be the set of NXDo- P2P C&C network, it follows a contingency plan, where
mains collected by th®GA Discovery(Section 4) and & DGA-based component is used to try to recover from
DGA Modeling(Section 5.1) modules for tHeth DGA. the loss of C&C communication. The malware will then
For each DGA, we set aside a subBB"an ¢ NX; of resolve pseudo-random domain names, until an active
NXDomains to train atHMM; model. Then we use the C&C domain name is found.
remainingNXest = NX — N)gtrain to compute the true To date, we have discovered 12 such C&C domains.
positive (TP) rate oHMM;, and a setA that consists Over time, these 12 domains resolved to five different

of 602,969 unique domain names related to the consisC&C IPs hosted in four different networks, three in the
tently popular domain names accordingaexa.com US (AS6245, AS16626 and AS3595) and one in the

to compute the false positive (FP) rate. To obtain United Kingdom (AS24931). Interestingly, we observed
we first consider all domain names that have been conthat the UK-based C&C IP address remained active for a
sistently ranked in the top 100,000 popular domains byvery short period of time of only a few minutes, from Jan

alexa.com for approximately one year. This gave us a 25, 201212:14:04  EST to Jan 25, 20122:22:37
setT of about 60,000 “stable” popular domain names, EST. The C&C moved from a US IP (AS16626) to the

which we consider aegitimate domains. Then, we UK (AS24931), and then almostimmediately back to the
monitored the stream of successful DNS queries in &JS (AS3595).
large live network for a few hours, and we addedAto 742 BankPatch

all the domain names whose effective 2LD isTin .
. . . We picked the BankPatch DGA cluster as a sample
We performed experiments with a varying number oo ; :
c— |N>§tram| of training samples. Specifically, we set case for analysis since this botnet had been active for
! i &everal months during our experiments and the infected

equal to 100, 200, 500, 1,000, 2,000, 5,000, and 10,00 jopulation continues to be significant. The C&C infras-
We then computed the trade-off between TPs and FPs fgtoP ; gnincant. ;
tructure that supports this botnet is impressive. Twenty

different detection thresholds. In the interest of spacee,wsix different clusters of servers acted as the C&Cs for

report only the results faz=1,000 in Table 3. In general, "
. : . .~ this botnet. The botnet operators not only made use of
the results improve for increasing numbers of training in- . .
. . a DGA but also moved the active C&Cs to different net-
stances. We set the detection threshold so as to obtain an

FP rate equal to 0.1%, 0.5%, 1%, 3%, 5%, and 10%. AS\‘/vorks every few weeks (on average). During our C&C

we can see, at FP=1% we obtained a high9g%) TP “Sample MD5s:  8f60afadeale761edd49dfe012c22chf  and
rate for three out of six DGAs, and relatively good resultsccec69613¢c71d66f98abe9cc7e2e20ef.




discovery process, we observed IP addresses controlled

by a European CERT. This CERT has been taking over
domain names from this botnet for several months. We
managed to cross-validate with them the completeness
and correctness of the C&C infrastructure. Complete in-
formation about the C&C infrastructure can be found in

Table 4: C&C Infrastructure for BankPatch.

’ IP addresses

CcC ‘ Owner

146.185.250,89-92
31.11.43(25-26}
31.11.43{191-194
46.16.240{11-15}

RU
RO
RO
UA

Petersburg Int.
SC EQUILIBRIUM
SC EQUILIBRIUM
iNet Colocation

Table 4. 62.122.73{11-14,18 | UA | “Leksim” Ltd.
. 87.229.126{11-16} HU | Webenlet Kift.
The actual structure of the domain name used 94.63.240{11-14) RO | Com Frecatei

by this DGA can be separated into a four byte pre-
fix and a suffix string argument. The suffix string
arguments we observed were:seapollo.com,

94.199.51425-18}
94.61.247{188-193
88.80.13{111-116

HU
RO
SE

NET23-AS 23VNET
Vatra Luminoasa
PRQ-AS PeRIiQuito

] 109.163.226(3-5} RO | VOXILITY-AS
t_omvader.com, aulmala.com, apon 94.63.149(105-106 | RO | SC CORAL IT
tis.com, fnomosk.com, erhogeld.com, 94.63.149({171-17% RO | SC CORAL IT
erobots.com, ndsontex.com, rte- 176.53.17211-212 | TR | Radore Hosting

hedel.com, nconnect.com, edsafe.com,

176.53.17{51-56}

TR

Radore Hosting

: 31.210.125{5-8} TR | Radore Hosting
bgzrhogeld.com, musallied.com, newna- 31131.4(117-123 | UA | LEVEL7-AS IM
cion.com, susaname.com, tvolveras.com 91.228.111{26-29} UA | LEVEL7-AS IM
anddminmont.com . 94.177.51{24-25} UA | LEVEL7-AS IM
The four bytes of entropy for the DGA were provided 95.64.55{15-16} RO | NETSERV-AS
by the prefix. We observe collisions between NXDo- 95.64.61{51°54) RO | NETSERV-AS
y the p : ; 194.11.16.133 RU | PIN-AS Petershurg
mains from different days, especially when only one suf- 46.161.10{34-37} RU | PIN-AS Petersburg
fix argument was active. Therefore, we registered a small | 46.161.29.102 RU | PIN-AS Petersburg

sample of ten domain names at the beginning of 2012 in
an effort to obtain a glimpse of the overall distribution of
this botnet. Over a period of one month of monitoring
the sink-holed data from the domain name of this DGA,

95.215{0-1}.29
95.215.0{91-94}
124.109.3{3-6}
213.163.9443-46}
200.63.41{25-28}

RU
RU
TH
NL
PA

PIN-AS Petersburg
PIN-AS Petersburg
SERVENET-AS-TH-AP
INTERACTIVE3D-AS
Panamaserver.com

this botnet has infected hosts in 270 different networks

distributed across 25 different countries. By observing

the recursive DNS servers from the domain names Wgority of cases. Unfortunately, there are some scenarios
sinkholed, we determined 4,295 were located in the USjn which the HMM-based classification has difficulties.
The recursives we monitored were part of this list and wewe believe this is because our HMM considers domain
were able to measure 86 infected hosts (on average) ifames simply to be sequences of individual characters.
the network we were monitoring. The five countries that|n our future WOfk, we p|an to experiment with 2_grams,
had the most DNS resolution requests for the sinkholedvhereby a domain name will be seen as a sequence of
domain names (besides the US) were Japan, Canadgairs of characters, which may achieve better classifica-
the United Kingdom and Singapore. The average numtjon accuracy for the harder to model DGAs.

ber of recursive DNS servers from these countries that . example, our HMM-based detector was unable to
contacted our authorities was 22 — significantly smaller ’

, o obtain high true positive rates on the Boonana DGA. The
than the volume of recursive DNS servers within the US.

reason is that the Boonana DGA leverages third-level
pseudo-random domain names under several second-
8 Discussion and Limitations level domains owned bglynamic DNSproviders. Dur-
Pleiades has some limitations. For example, once @ng our evaluation, the hosts infected with Boonana con-
new DGA is discovered, Pleiades can build fairly accu-tacted DGA-generated domain names under 59 different
rate statistical models of how the domains generated begffective second-level domains. We believe that the high
the DGA “look like”, but it is unable to learn or recon- variability in the third-level domains and the high num-
struct the exact domain generation algorithm. Thereforeber of effective 2LDs used by the DGA make it harder
Pleiades will generate a certain number of false positiveso build a good HMM, thus causing a relatively low
and false negatives. However, the results we presenteadumber of true positives. However, in a real-world de-
in Table 1 show that Pleiades is able to construct a veryployment scenario, the true positive rate may be signif-
accurateDGA Classifiermodule, which produces very icantly increased by focusing on the dynamic DNS do-
few false positives and false negatives toe= 10. At  mains queried by the compromised hosts. For example,
the same time, Table 3 shows that lB&C Detection  since we know that Boonana only uses dynamic DNS
module, which attributes a single active domain nhamedomains, we can filter out any other NXDomains, and
to a given DGA, and also works fairly well in the ma- avoid passing them to the HMM. In this scenario the



HMM would receive as an input only dynamic DNS do- used in the future by other malware. A large number
mains, which typically represent a fraction of all active of new DGAs may potentially have a negative impact on
domains queried by each host, and consequently the althe supervised modules of Pleiades, and especially on the
solute number of false positives can be significantly re-HMM-based C&C detection. In fact, a misclassification
duced. by theDGA Classifierdue to the large number of classes
As we mentioned in Section 3, detecting active DGA-among which we need to distinguish may misguide the
generated C&C domains is valuable because their reselection of the right HMM to be used for C&C detec-
solved IP addresses can be used to update a C&C Ifon, thus causing an increase in false positives. In our
blacklist. In turn, this IP blacklist can be used to block future work we plan to estimate the impact of such mis-
C&C communications at the network edge, thus pro-classifications on the C&C detection accuracy, and inves-
viding a way to mitigate the botnet’s malicious activ- tigate whether using auxiliary IP-based information (e.g.
ities. Clearly, for this strategy to be successful, thelP reputation) can significantly improve the accuracy in
frequency with which the C&C IP addresses changethis scenario.
should be lower than the rate with which new pseudo-

random C&C domain names are generated by the DGAbotnets may attempt to evade both the DGA discovery

This assumption holds for all practical cases of DGA- . .
.and C&C detection process. As we have already dis-
based malware we encountered. After all, the generation oL , :
. . cussed, itis in the malware authors’ best interest to create
of pseudo-random domains mainly serves the purpose

. . a high number of DGA-related NXDomains in order to
of making the take-down of loosely centralized botnets
) S e make botnet take-over efforts harder. However, the mal-
harder. However, one could imagine “hybrid” botnets

. . ! ware could at the same time generate NXDomains not re-
that use DGA-generated domains to identify a set of PE€[ ted with the C&C discovery mechanism in an effort to
IPs to bootstrap into a P2P-based C&C infrastructure. y

Alternatively, the DGA-generated C&C domains may bem'.Sk:"ad our cu.rrent implementation Of. Pleiades. These
. : . noisy NXDomains may be generated in two ways: (1)
flux domains, namely domain names that point to a IP

fluxing network. It is worth noting that such sophisti- randomly, for example by employing a different DGA,

cated “hybrid” botnets may be quite complex to develop, > (2) by using one DGA with two different seeds, one
cer y ybeq P P-of which is selected to generate noise. In case of (1), the
difficult to deploy, and hard to manage successfully.

probability that they will be clustered together is small.

Another potential limitation is due to the fact that This means that these NXDomains will likely not be part

Pleiades is not able to distinguish between different bote¢ o fing cluster correlation process and they will not

nets.whose bot?malware use the same DGA algorithmbe reported as new DGA-clusters. On the other hand,
In this case, while the two botnets may be controlled by o (2) might cause problems during leaming,

different entities, Pleiades will attribute the comproets

As the internals of our system become public, some

espe-
h thin th itored K inale DGA cially to the HMM, because the noisy and “true” NXDo-
osts within the monitored network to a single ~ mains may be intermixed in the same cluster, thus mak-

based bgtr.\et.. ] . ing it harder to learn an accurate model for the domain
One limitation of our evaluation method is the ex- names.

act enumeration of the number of infected hosts in the

ISP network. Due to the location of our traffic moni-

toring sensors (below the recursive DNS server), we can

only obtain a lower bound estimate on the number of in-

fected hosts. This is because we have visibility of the IPg  conclusion

addresses within the ISP that generate the DNS traffic,

but lack additional information about the true number of In this paper, we presented a novel detection system,

hosts “behind” each IP. For example, an IP address thatalled Pleiades, that is able to accurately detect machines

generates DNS traffic may very well be a NAT, firewall, within a monitored network that are compromised with

DNS server or other type of complex device that behave®GA-based bots. Pleiades monitors traffic below the lo-

as a proxy (or relay point) for other devices. Also, ac-cal recursive DNS server and analyzes streams of un-

cording to the ISP, the DHCP churn rate is relatively low, successful DNS resolutions, instead of relying on man-

and it is therefore unlikely that we counted the same in-ual reverse engineering of bot malware and their DGA

ternal host multiple times. algorithms. Using a multi-month evaluation phase, we
In the case of Zeus.v3, the DGA is used as a backughowed that Pleiades can achieve very high detection ac-

C&C discovery mechanism, in the event that the P2Pcuracy. Moreover, over the fifteen months of the oper-

component fails to establish a communication channeational deployment in a major ISP, Pleiades was able to

with the C&C. The notion of having a DGA compo- identify six DGAs that belong to known malware fami-

nent as a redundant C&C discovery strategy could bdies and six new DGAs never reported before.
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