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ABSTRACT
Graph modeling allows numerous security problems to be tackled
in a general way, however, little work has been done to under-
stand their ability to withstand adversarial attacks. We design and
evaluate two novel graph attacks against a state-of-the-art network-
level, graph-based detection system. Our work highlights areas in
adversarial machine learning that have not yet been addressed,
specifically: graph-based clustering techniques, and a global feature
space where realistic attackers without perfect knowledge must
be accounted for (by the defenders) in order to be practical. Even
though less informed attackers can evade graph clustering with
low cost, we show that some practical defenses are possible.

KEYWORDS
Adversarial Machine Learning; Unsupervised Learning; DGA; Net-
work Security

1 INTRODUCTION
Network level detection systems are used widely by the community
as the first line of defense against Internet threats [9, 20, 27, 29, 33,
41, 63]. These systems often represent the underlying network traf-
fic as a graph for various reasons, but most importantly for the com-
putational efficiency and scalability that graph techniques enable.
These computational advantages, for example, enable categorical
objects (like domain names and IP addresses) to be transformed
into feature vectors in a multi-dimensional euclidean space. This
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allows supervised and unsupervised learning to take place with
greater efficiency.

The wealth of new capabilities that statistical learning systems
brought to the security community make them a prime target for
adversaries. Several studies have shown how security systems that
employ machine learning techniques can be attacked [36, 49, 52,
60, 62], decreasing their overall detection accuracy. This reduction
in accuracy makes it possible for adversaries to evade detection,
rendering defense systems obsolete.

While graph based network detection systems are not immune
to adversarial attack, the community knows little about practical at-
tacks that can be mounted against them. As these network detectors
face a range of adversaries (e.g., from script kiddies to nation states),
it is important to understand the adversary’s capabilities, resources,
and knowledge, as well as the cost they incur when evading the
systems.

In this paper we present the first practical attempt to attack
graph based modeling techniques in the context of network security.
Our goal is to devise generic attacks on graphs and demonstrate
their effectiveness against a real-world system, called Pleiades [9].
Pleiades is a network detection system that groups and models
unsuccessful DNS resolutions from malware that employ domain
name generation algorithms (DGAs) for their command and control
(C&C) communications. The system is split into two phases. First,
an unsupervised process detects new DGA families by clustering
a graph of hosts and the domains they query. Second, each newly
detected cluster is classified based on the properties of the generated
domains.

To evade graph clustering approaches like Pleiades, we devise
two novel attacks—targeted noise injection and small community—
against three commonly used graph clustering or embedding tech-
niques: i) community discovery, ii) singular value decomposition
(SVD), and iii) node2vec. Using three different real world datasets (a
US telecommunication dataset, a US university dataset and a threat
feed) and after considering three classes of adversaries (adversaries
with minimal, moderate and perfect knowledge) we mount these
two new attacks against the graph modeling component of Pleiades.
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We show that even an adversary with minimal knowledge, i.e.,
knowing only what is available in open source intelligence feeds
and on their infected hosts, can evade detection.

Beyond devising practical attacks, we demonstrate that the at-
tacks are inexpensive for adversaries. Fortunately, defenders are
not without recourse, and detection systems’ parameters can be
tuned to be more resistant to evasion. Based on these discoveries,
we make recommendations to improve Pleaides’ resilience.

Our paper makes the following contributions:

Two Novel Attacks. The targeted noise injection attack improves
on prior work that randomly injects noise; by targeting the injected
vertices and edges to copy the graph structure of the original signal,
we force noise into the resulting clusters. Our small community
attack abuses the known property of small communities in graphs to
subdivide and separate clusters into one or more unrelated clusters.

Practical Attacks and Defenses. While more knowledgeable at-
tackers typically fare better, we demonstrate that even minimal
knowledge attackers can be effective: attackers with no knowledge
beyond their infections can render 84% of clusters too noisy to be
useful, and evade clustering at a rate of 75%. The above attacks can
be performed at low cost to the adversary by not appearing to be
anomalous, nor losing much connectivity. Simple defenses raise
the attacker’s costs and force only 0.2% of clusters to be too noisy,
and drop the success rate to 25%. State of the art embeddings, such
as node2vec, offer more adversarial resistance than SVD, which is
used in Pleiades.

2 BACKGROUND
2.1 Graph-based Clustering
Graph clustering is commonly used in security. Community discov-
ery identifies criminal networks [39], connected components track
malvertising campaigns [21], spectral clustering on graphs discov-
ers botnet infrastructure [9, 20], hierarchical clustering identifies
similar malware samples [11, 45], binary download graphs group
potential malware download events [29, 40, 41], and newly devised
graph embeddings, like node2vec [26], could further improve upon
the state of the art. Beyond clustering, other graph-based techniques
are used, such as belief propagation [18, 46]. Unfortunately, it is
unknown how resistant these techniques are to adversarial evasion.

2.1.1 Community Detection. There are many ways to detect
communities in a graph. Several techniques in this space rely on
a modularity metric to evaluate the quality of partitions, which
measures the density of links inside and outside communities. This
allows an algorithm to optimize modularity to quickly find com-
munities. The Louvain algorithm [14] scales to large networks
with hundreds of millions of vertices. Communities are usually
hierarchical [42, 47, 50]; however, finding sub-communities within
communities is a known hard problem [15]. This allows attackers
to hide sub-communities in a “noisy” community by adding edges.

2.1.2 Spectral Methods. In [57], Braverman et al. discuss several
popular spectral clustering strategies. First, a similarity matrix is
used to represent the graph. Each row and each column represent a
vertex to be clustered, and the weight is a similarity score between
the corresponding vertices. After proper normalization, the matrix

M is used as input to singular value decomposition (SVD) of rank k ,
SVDk (M) = U ΣV ∗. When the resulting eigenvectors (e.g., vectors
in U ) are further normalized, they can be used as an embedding
in a euclidean space for learning tasks. In spectral methods, the
hyperparameter k is usually chosen by first evaluating the scree
plot of eigenvalues to identify the “elbow” where higher ranks have
diminishing returns of representing the input matrix. When the
scree plot starts to plateau at the ith eigenvalue, we setk = i [17, 59].

Spectral clustering with SVD is known to have limitations when
clusters are imbalanced; this is due to either graphs being scale-free
(power law distribution) [31], or when small communities exist [30].
Unfortunately, both commonly occur in real-world data. In practice,
these small communities are merged into what is colloquially called
the “death star” cluster: a large, noisy cluster that contains many
small communities.

2.1.3 node2vec. Contrary to the strong homophily assumption
of community detection and spectral clustering, node2vec [26] has
the advantage of balancing homophily and structural equivalence in
its embeddings. For example, vertices that are sink nodes will have
similar embeddings. node2vec generates embeddings of vertices
by optimizing the sum of the log likelihood of seeing the network
neighborhood given a vertex v , for all vertices on the graph:

max
f

∑
log P(NS (v)| f (v)) (1)

Where f (v) is the embedding of vertex v , NS (v) represents the
network neighborhoods of v with a series of vertices obtained by
the sampling strategy S . node2vec proposes a sampling strategy
by random walks starting from every vertex on the graph with
the following parameters: 1) number of walks from each vertex,
2) length of each walk, 3) probability to return to the same vertex
(Breadth First Search), and 4) probability to explore out to fur-
ther vertices (Depth First Search). Once the walk samples have
been obtained, node2vec uses a tunable neighborhood size to get
the neighborhood of vertices. For example, a walk with length 5
{v1,v2,v3,v4,v5} generates the following neighborhoods with
size 3: N (v1) = {v2,v3,v4}, N (v2) = {v3,v4,v5}.

In order to compute the embeddings given f (v), Equation 1 is
factorized as a product of the conditional probability of each ver-
tex in the neighborhood based on the conditional independence
assumption. Each underlying conditional probability is defined as
a sigmoid function, and the embeddings are learned by stochas-
tic gradient descent (SGD) with negative sampling optimization.
Effectively, node2vec learns embeddings in a fashion similar to
word2vec [37] but does not use skip-grams. Attackers can target
the neighborhood size and sampling parameters to encourage their
vertices to be under-sampled and thus split into multiple noisy
clusters.

2.2 Related Work
Existing work in adversarial machine learning has focused on an-
alyzing the resilience of classifiers. Huang et al. [28] categorize
attack influence as either causative or exploratory, with the former
polluting the training dataset and the latter evading the deployed
system by crafting adversarial samples. Following the terminology
of Huang et al., our work focuses on exploratory attacks that target
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the graph clustering component of Pleiades. We assume that the
clustering hyperparameters are selected with attack-free labels,
and the subsequent classifier is not polluted when they are trained.
Contrary to other exploratory attacks in literature, we face the chal-
lenge that the clustering features cannot be modified or computed
directly, and that attackers often have an incomplete view of the
defender’s data.

In order to compute optimal graph partitions or vertex embed-
dings, one needs to have a global view of all objects on the graph.
On the contrary, related work can compute classification features
directly from crafting adversarial samples. For example, features are
directly obtained from spam emails [36, 60], PDF files [49, 53, 62],
phishing pages [49], images [16, 25, 44, 52], network attack pack-
ets [24], and exploits [55, 58]. These security applications classify
an object based on features extracted from only that object and its
behavior. This makes the features of system classifiers more local,
and enables evasion techniques such as gradient descent directly in
the feature space. We make the following definition: a local feature
can be computed from only one object; whereas a global feature
needs information from all objects being clustered or classified.

Since Pleiades uses global features, an adversary’s knowledge
can affect the success of attacks. For example, if the adversary
has full access to the defender’s datasets, she can reliably compute
clustering features and is more equipped to evade than a less knowl-
edgeable attacker. Many researchers [43, 56] have shown that, even
without access to the training dataset, having knowledge about the
features and an oracle to obtain some labels of objects is sufficient
for an attacker to approximate the original classifier.

Biggio et al. [12, 13] are the first to study adversarial clustering.
They propose a bridge attack, which works by injecting a small
number of adversarial samples to merge clusters. The attackers
have perfect knowledge in their assumption. We distinguish our
work by i) considering attackers with different knowledge levels,
ii) evaluating how adversarial graph-clustering in network security
affects the whole system, and iii) quantifying the cost of attacks.
With respect to attack cost analysis, Lowd et al. [35] propose a linear
cost function as a weighted sum of feature value differences for
crafting evasive adversarial samples. Since we do not work directly
in the feature space, we propose different costs for the attacks we
present in Section 3.

To summarize, our work is novel because we focus on adversar-
ial clustering, which deals with global features that cannot be di-
rectly changed. We also evaluate capabilities of attackers with various
knowledge levels, and quantify the costs associated with attacks.

3 THREAT MODEL & ATTACKS
In this section, we describe our threat model and explain our attacks
as modifications to a graph G . In practice, the attacker changes the
graph based on the underlying data that are being clustered. For
example, if the vertices in a graph are infected hosts and the domains
they query as in Pleiades, the graph representation can be altered
by customized malware that changes its regular querying behavior.

3.1 Notation
An undirected graph G is defined by its sets of vertices (or nodes)
V and edges E, where G = (V ,E) and E = {(vi ,vj ) : if there exists

an edge between vi andvj ,vi ∈ V ,vj ∈ V }. An undirected bipartite
graph is a special case whereV can be divided into two disjoint sets
(U and V ) such that every edge connects at a vertex inU and one
in V , represented as G = (U ,V ,E). While the attacks apply in the
general case, oftentimes bipartite graphs appear in security contexts:
hosts (U ) query domains (V ), clients connect to servers, malware
make system calls, etc. Finally, a complete undirected bipartite graph
is where every vertex inU has an edge to every vertex in V .
G is an undirected graph that represents the underlying data

a defender clusters. The graph clustering subdivides G into clus-
ters C0, . . . ,Ck , where V = C0 ∪ . . . ∪Ck . If the graph clustering
method is based on graph partitions, then each cluster Ci is a sub-
graph Gi , and G = G0 ∪ . . . ∪Gk . Often when applied, a defender
seeks to cluster vertices either inU or V of the bipartite graph, for
example, cluster end hosts based on the domains they resolve, or
malware based on the system calls they make. An attacker controls
an attacker graph,G ⊂ G. The adversary uses the targeted noise in-
jection and the small community attacks described below to change
G to G ′, by adding or removing nodes and edges from G.

These attacks violate the underlying basic assumptions of graph
clustering techniques, which either renders the clustered subgraph G ′

to be useless to the defender or preventsG ′ from being extracted from
G intact (See Section 3.3).

3.2 Threat Model
Before describing attacker knowledge levels, we discuss knowledge
that is available to all attackers. We assume all attackers have at
least one active infection, or G ⊂ G. The attacker is capable of
using any information that could be gathered from G to aid in
their attacks. We also assume that an attacker can evaluate clusters
like a defender can, e.g., manual verification. When done with a
classifier, an attacker has black-box access to it or can construct
a surrogate that approximates the accuracy and behavior of the
real classifier based on public data. This may seem extreme, but
the plethora of open source intelligence (OSINT) [4, 6, 22] data and
MLaaS machine learning tools [1–3, 5, 7] make this realistic. Finally,
an attacker has full knowledge of the features, machine learning
algorithms, and hyperparameters used in both the unsupervised
and supervised phases of the system under attack, as these are
often published [8, 9, 20, 29, 41, 45, 48]. Since clustering requires
some graph beyond G, we must consider attackers with various
representations of the defender’s G. We evaluate three levels: mini-
mal, moderate, and perfect knowledge. The minimal level attacker
only knows what is in their attack graphG , but the perfect attacker
possesses G. For example, a perfect adversary would have access
to the telecommunication network data used in Pleiades, which is
only obtainable by the most sophisticated and well resourced of
adversaries.

Minimal Knowledge. The minimal knowledge case represents
the least sophisticated adversary. In this case, only the attacker
graphG is known, as well as any open source intelligence (OSINT).
For example, the attacker can use OSINT to select potential data to
inject as noise, or can coordinate activities between their vertices
inG . In the Pleiades example, an attacker with minimal knowledge
can draw information from their infected hosts.
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Moderate Knowledge. The moderate knowledge case represents
an adversary with G̃, an approximation of G. If attacking Pleiades,
G̃ would be a host/domain graph from a large enterprise or uni-
versity in order to approximate the view that the defender has.
This allows the adversary to evaluate their attacks. The size of G̃
affects the evaluation from the attacker’s perspective, which we
will explore by randomly sampling subgraphs of G̃. An attacker
with moderate knowledge is similar to a sophisticated adversary
with access to large datasets through legitimate (i.e., commercial
data offerings) or illegitimate (i.e., security compromises) means.

Perfect Knowledge. Finally, the perfect knowledge case is for an
adversary who has obtained G from the defender. Given the full
dataset and knowledge of the modeling process, an adversary can
completely reconstruct the clustering results of the defender to
evaluate the effectiveness of their attacks. Ideally, this data would
be well guarded making this level of knowledge only realistic for
the most sophisticated of attackers, e.g., nation-state sponsored
threats. Nevertheless, considering the damage that could be done
by a perfect knowledge attacker is important as a security evalua-
tion, since it allows us to find potential weaknesses in the graph
clustering techniques.

3.3 Attacks
We present two novel attacks against graph clustering. The first,
targeted noise injection, improves on random injections [34, 54] by
emulating the legitimate signal’s graph structure. The second, small
community attack, exploits the known phenomenon of small com-
munities in graphs [30, 32]. Our attacks violate both the homophily
and the structural equivalence assumptions used by graph clus-
tering methods. That is, our attacks either change what nodes are
close together to violate homophily, or they change observations
of node neighborhoods so as to violate structural equivalence.

Identifying a successful attack depends on the system, which
will be described in detail in Section 4. Since we use Pleiades, we
evaluate attacks by the impact on a subsequent classification of the
resulting adversarial clusters. However, this could be done purely at
the unsupervised level by manually evaluating the accuracy of the
output clusters, or leveraging prior work in adversarial malware
clustering [12] to measure global cluster quality decrease. Next, we
evaluate the cost incurred by the attacker. We analyze the costs by
measuring changes to their graph’s structure that would either flag
them as anomalous or damage connectivity between the graph’s
vertices. In the descriptions below, an attacker’s initial graph G is
shown, and the alterations yield a modified graph, G ′, that repre-
sents a defender’s view of the attacker’s graph after the adversarial
manipulation.

3.3.1 Targeted Noise Injection. Figure 1 illustrates two targeted
noise injection attacks. Consider a bipartite attacker graph G, with
vertex setsU (circles) and V (squares). To mount the attack, noise
is injected intoG to generateG ′. We inject noisy edges from nodes
controlled by the attacker for the purpose of mirroring real edges.
This encourages newly connected nodes to be clustered together
with the attacker’s nodes.

Add Noise to
New Nodes

G

U V
UV'

G'

V U

G'

V

Add Noise to
Existing Nodes

V'

Figure 1: Example of targeted noise injection attacks on a
graph.

Algorithm 1 Targeted Noise Injection Attack Algorithm for At-
tacker A controlling G

Input: A,m,G = (U ,V ,E)
Output: G ′

1: for i = 1 tom do
2: V ′i ← according to knowledge of A
3: for v ′ ∈ V ′i do
4: Mirror the edges such that f : (u,v) ∈ E 7→ (u,v ′) ∈ E ′i is

bijective.
5: end for
6: end for
7: Return G ′ = (U , (

m⋃
i=1

V ′i ) ∪V , (
m⋃
i=1

E ′i ) ∪ E)

To inject noise, the attacker creates an additional vertex set V ′,
represented by red squares. Entities in V ′ should differ substan-
tially from those in V , which depend on the underlying system
to be evaded. In Pleiades’ case, this means the injected domains
(V ′) must be different, in terms of character distribution, from the
legitimate domains (V ). Then, for every edge betweenU andV , the
attacker creates a corresponding edge betweenU andV ′, as shown
in Figure 1. That is, the attack function f : (u,v) ∈ E 7→ (u,v ′) ∈ E ′
is bijective. This creates G ′ = (U ,V ∪V ′,E ∪ E ′), where E ′ are the
corresponding edges fromU to V ′, denoted by dotted red edges in
the figure. The other way to inject noise is to create edges fromU to
existing nodes from G, as shown in Figure 1. This does not add ad-
ditional nodes, but identifies other vertices on the defender’s graph
G to use as V ′. A new edge is created for all edges between U and
V . Attacker information is used to identify additional nodes to use.
Example nodes may include other non-malicious domains queried
by infected hosts, or a machine’s existing behavior observed by the
malware. More commonly, it requires some knowledge of the graph
being clustered, G. This process can be repeated to increase |V ′ | to
be multiples of |V |.

Algorithm 1 formally describes noise injection for attacker A
controlling the attacker graph G , with noise levelm. Line 1 to Line
6 repeats the noise injection processm times. In line 2,A generates
the set of noisy nodes V ′ according to her knowledge. From line
3 to 5, the attacker creates a one-to-one mapping from E to E ′i .

Line 8 returns the manipulated attacker graph G ′ = (U , (
m⋃
i=1

V ′i ) ∪
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V , (
m⋃
i=1

E ′i ) ∪ E). We will evaluate two variants to determine how

much noise is needed to mount a successful, but low cost attack. In
the first variantm = 1, and in the secondm = 2.

While additional edges and nodes could be injected arbitrarily
at random, we choose to mirror real edges in order to make both
nodes from V ′ and V have similar embeddings. We define V ′ to be
the set of noisy nodes. The targeted noise injection attack exploits
the homophily assumption [14, 57] of graph clustering methods. In
community discovery and spectral methods, graph partitions can-
not distinguish injected noisy nodes (V ′) from real nodes (V ), which
exhibit structurally identical connections toU . The co-occurrence
increases the observation of noisy nodes appearing in neighbor-
hoods of real nodes, and vice versa for node2vec. We expect nodes
from V ′ to join existing clusters containing V .

The targeted noise injection attack has a cost for the attacker of
raising the profile of nodes belonging to attacker graph G, poten-
tially making them outliers. Specifically, hosts fromU will increase
in percentile with respect to their degree, i.e., a relatively high de-
gree could indicate anomalous behavior, which we can measure
by the increase in percentile ranking changes before and after an
attack. We call this the anomaly cost.

For attacking Pleiades, consider a graph where U are infected
hosts andV are the domain names that the hosts inU query. To gen-
erate G ′ an attacker instructs their malware to query an additional
domain (v ∈ V ′) for each domain used for its normal malicious op-
eration (v ∈ V ). This causes the domains from V and V ′ to conflict
such that the clustering is not useful to the defender. However, the
anomaly cost may make these trivial to detect. Nonetheless, we
will show in Section 5.2.4 that the cost of attack is small enough to
be practical.

3.3.2 Small Community. Figure 2 illustrates four potential small
community attacks of increasing intensity. The small community
attack removes edges and/or nodes such that the graph clustering
separates a single attack graph into multiple clusters, while main-
taining as much connectivity from the original graph as possible.
Again,G is a bipartite attacker graph with identical vertex and edge
sets as before. To mount the attack, an adversary first constructs
a complete version of G, Ĝ. In Ĝ, every vertex inU has an edge to
every vertex in V . To construct G ′, the adversary removes edges
from Ĝ. In Figure 2, the attacker has removed one and two edges
per vertex in V in G ′1 and G

′
2, respectively. Then inG ′3 and G

′
4, the

attacker has removed a vertex from V , and then removed one and
two edges per remaining vertex. The attacker randomly chooses
nv (such that 0 ≤ nv ≤ |V | − 1) nodes to remove, and ne (such that
0 ≤ ne ≤ |U | − 1) edges from each remaining node V in Ĝ. In the
extreme case, there is only one vertex remaining fromV connecting
to one inU , which often cannot be captured by graph embeddings.
Each attack instance is configured with (nv , ne ) pair, or, in other
words, the (|V | − nv , |U | − ne ) pair to keep nodes and edges. We
define the attack success rate as the number of successful attack
configurations divided by |U | ∗ |V |.

If the attacker has minimal knowledge, she can choose nv and ne
randomly, and hope for the best. With perfect knowledge (knows
G), she can choose the smallest nv and ne that succeed. Attackers
without some knowledge or approximation of G will be unable to

Randomly Remove

E Ê

E' E'

G Ĝ

G'1

 0 nodes,
1 edge 

0 nodes,
2 edges

U V U V

G'2

E'

G'3

1 node,
1 edge 

E'

G'4

1 node,
2 edges

Figure 2: Example small community attacks on a graph.

Algorithm 2 Small Community Attack Algorithm for Attacker A
controlling G

Input: A,G = (U ,V ,E)
Output: G ′

1: Construct Ĝ = (U ,V , Ê) from G, where |Ê | = |U | ∗ |V |
2: nv ,ne ← according to knowledge of A, where nv < |V |,ne <
|U |

3: V ′ ← Choose |V | − nv random nodes from V
4: for v ′ ∈ V ′ do
5: Choose |U | − ne random edges that connect to v ′ to update

U ′ and E ′
6: end for
7: Return G ′ = (U ′,V ′,E ′)

verify if their attacks succeed. While G could be manipulated di-
rectly, removing nodes and edges lowers the utility for the attacker
by losing connectivity in their attack graph. We aim to reduce the
average edge number per node of V in G, while simultaneously
maintain the lowest possible cost. Constructing and altering Ĝ both
simplifies the experiments of quantifying the small community
attack cost and makes the job of the attacker easier. We believe this
does not negate the correctness of our experiments.

Algorithm 2 formally shows the the small community attack A
in control of graphG . Line 1 constructs the complete graph Ĝ from
G. In line 2, A chooses (nv ,ne ) according to her knowledge. Then,
the attacker chooses |V | − nv random nodes from V as V ′. Each
node inV ′ connects to all nodes inU . From line 4 to 6, the attacker
chooses |U | − ne random edges to keep for each node in V ′, and
thus forming U ′ and E ′. Lastly, line 7 returns G ′ = (U ′,V ′,E ′) as
the manipulated attacker graph.

The small community attack exploits the information loss in
graph embeddings. While community discovery works better at
identifying islands and singletons, graph embeddings may miss
such signal given the hyperparamters chosen at deployment. Ex-
isting methods for choosing hyperparameters do not account for
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potential small community attack opportunities. The downside of
the attack is the agility cost. By removing nodes and edges from G,
the adversary has to give up control over nodes, redundancy, or
even functionality. In addition to losing nv , the agility cost can be
measured by the change in graph density (Equation 2) from D(G)
to the chosen D(G ′). We define the following D(G) and D(G ′):

D(G) = |E |
(|U | ∗ |V |) (2)

D(G ′) = |E ′ |
(|U | ∗ |V |) (3)

A graph’s density ranges from [0, 1], which denote a graph with
zero edges or all possible edges, respectively. ForD(G ′)we consider
how many edges are in E ′ compared to the maximum possible
number of edges between the original U and V . This normalizes
the number of edges by the structure of the G. The agility cost is
D(G) − D(G ′) if D(G) > D(G ′), or zero if D(G) ≤ D(G ′). A loss in
density implies a potential loss of connectivity, but maintaining or
increasing the density bodes well for the attacker. They can afford
an even denser structure, yet still evade defenders. It is important
to note that, while nv is lost, this is reflected in the density score,
as |V | includes any removed vertices like nv . A lower density, and
therefore a higher cost, is incurred when edges and/or vertices are
removed relative to the original structure seen in G.

Consider an attack on Pleiades. Ĝ is created by completing G.
To mount the attack likeG ′2, the adversary partitions the domain
names that are used to control her malware by removing one of the
control domains (nv=1), and then excludes two distinct hosts that
query each of the remaining domains (ne=2). In other words, the
adversary can also randomly choose one host (|U | − ne ) to query
each one of remaining control domains. This reduces the density
from D(G) = 0.5 to D(G ′2) = 1/3, and sacrifices one node (nv ).

If the adversary has knowledge that allows testing whether the
attack is successful or not, the attacker can increasingly remove
domains and queries from hosts until clustering G no longer results
inG ′ being extracted as a single cluster. In practice, as described in
Section 2.1, the subdivided G ′ often ends up either as portions of
the “death star” cluster; or in multiple, noisy clusters. In both cases,
the legitimate cluster is effectively hidden in a forest of noise. In
order to verify an attack was successful, however, an attacker must
have G or an approximation.

4 ATTACKS IN PRACTICE
We chose to attack Pleiades because it has been commercially de-
ployed and relies on graph modeling. Our reimplementation has
similar performance, as shown in Appendix 10.3. We now describe
portions of the reimplementation in detail.

4.1 Pleiades
An overview of Pleiades is shown in Figure 3. We focus our attacks
on the clustering component and use the classification phase to
demonstrate attack success. First, Pleiades clusters NXDOMAINs
(V ) queried by local hosts (U ) using the host-domain bipartite graph
(G). It groups together NXDOMAINs queried by common hosts into
clusters C0, . . . ,Ck , based on the assumption that hosts infected
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Figure 3: Overview of the DGA detection system.

with the same DGA malware query similar groups of DGA do-
mains. The graph clustering can be achieved by either community
discovery (1), spectral clustering (2) as in the original paper [9], or
node2vec clustering (3). Then the classification module computes
domain name character distributions of each cluster into a numeri-
cal feature vector, which is used to classify known DGA families. A
new unknown DGA family with features statistically similar to a
known one can be detected by this process. The system operates
on daily NXDOMAIN traffic generated by all hosts in a network
using the following data sources.

4.1.1 Datasets. We use anonymized recursive DNS traffic from
a large telecommunication company from December 18, 2016 to
December 29, 2016. The dataset contains NXDOMAINs queried by
hosts and the query timestamps. On average, there are 262 thousand
unique anonymized hosts, with 44.6 million queries to 1.8 million
unique NXDOMAINs in a day. We use this dataset to construct
Host-NXDOMAIN Graph as ground truth without attack. This is
available to defenders and perfect knowledge attackers.

As a surrogate network dataset, we use NXDOMAIN traffic from
a large US university network collected on December 25, 2016.
It contains 8,782 hosts and 210 thousand unique NXDOMAINs.
Among these NXDOMAINs, only 227 appeared in the ground truth
network dataset. The surrogate dataset is available to attackers
with moderate and perfect knowledge.

Last but not least, we use a reverse engineered DGA domains
dataset to train the supervised component of the system. We run
the reverse-engineered algorithms [10] to generate DGA domains
for 14 malware families: Chinad, Corebot, Gozi, Locky, Murofet,
Necurs, NewGOZ, PadCrypt ransomware, Pykspa, Qadars, Qakbot,
Ranbyus, Sisron, and Symmi. The training dataset also includes live
DGA domains observed in the ground truth network. We label 267
clusters belonging to four malware families present in the ground
truth network dataset (Pykspa, Suppobox, Murofet, and Gimemo),
and manually verify that these subgraphs are attack free. We train a
Random Forest classifier with an average accuracy of 96.08%, and a
false positive rate of 0.9%. The classifier trained from this dataset is
available for attackers of all knowledge levels. Table 1 summarizes
these datasets.

We discovered 12 new DGA malware families in only 12 days us-
ing the ground truth network traffic (see Appendix 10.3 for details).
We discovered real but unsuccessful evasion attempts in the wild,
and retrained our classifier with evasive instances. We believe we
have faithfully reimplemented Pleiades because we use comparable
datasets and we achieve similar clustering and modeling results.
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Dataset Number of Records Minimal Moderate Perfect
Reverse Engineered DGA Domains 14 DGA Families; 395 thousand NXD X X X
Host-NXDOMAIN Graph (Surrogate) 8782 hosts; 210 thousand NXD - X X
Host-NXDOMAIN Graph (Ground Truth) average 262 thousand hosts; 1.8 million NXD - - X

Table 1: Summary of datasets and their availability to minimal, moderate, and perfect knowledge attackers.

4.2 Attacks
Using the notation described in Section 3, let G be a bipartite graph
of the defender.U represents hosts, both infected and uninfected,
and V represent NXDOMAINs queried by hosts in the underlying
network. An edge exists from vi ∈ U and vj ∈ V iff the ith host
queried the jth NXDOMAIN. For an attacker graph G ⊂ G, the
hosts inU are infected hosts under the control of the attacker. In
the noise injection case, the attacker instructs their malware to
query NXDOMAINs beyond what is needed for normal operation,
as shown in Figure 1. In the small community case, the attacker
coordinates the querying behavior of their malware such that they
query fewer NXDOMAINs in common, as in Figure 2. We will
evaluate the effectiveness of the attacks by the drop in predicted
class probabilities and the predicted label of the classifier. In a
Random Forest, the predicted class probabilities of a feature vector
are calculated as the average predicted class probabilities of all trees
in the forest. In practice, if the predicted class probability decreases
substantially, the classifier will incorrectly label the instances, and
the attack will be considered successful.

4.3 Attack Costs
To compute the anomaly cost for noise injection, we analyze per-
centile changes of edges related to hosts in U in the structure of
G from before and after the attack. We quantify this change by
computing the cumulative distribution functions (CDFs, example
in Appendix 10.1) of vertex degrees before and after a successful
attack is mounted. Concretely, if an attacker can evade Pleiades but
raises the profile of their infected hosts from the 50th (in the CDF
before attack) to the 99.9th percentile of NXDOMAINs queried per
host (in the CDF after attack), a defender will be able to detect such
behavior with simple thresholding (i.e., monitoring hosts entering
the 95th percentile).

To quantify the adversarial cost behind the small community
attack, we measure the change of attacker graph density D(G ′) as
defined in Section 5.3. If the attacker graph density decreases, this
means the attacker no longer uses NXDOMAINs for their infection
and/or the infected hosts query fewer NXDOMAINs in common,
reducing their connectivity overall and increasing the botnet’s
management cost.

5 RESULTS
First, we show how to select hyperparameters for each of the three
graphmethods. Next, we present our results for both attacks against
each graph based clustering technique, for the three knowledge
levels. Finally, we explain the costs incurred by the attacker, and
how these can be used to identify possible defenses.
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Figure 4: Scree plot of eigenvalues of SVD.

Summary of Results. Our attacks against the graph clustering
component of Pleiades gravely reduce the predicted class proba-
bility of the subsequent classification phase. Even with minimal
knowledge, an adversary can launch an effective targeted noise
injection attack dropping the median predicted class probability to
0%. In the higher knowledge levels, the maximum predicted class
probability can be as low as 10%. Using a set of labeled DGA mal-
ware families observed in spectral clustering, the attacks reduce
the prediction accuracy from 99.6% to 0%.

In addition to being effective, the attacks do not substantially
raise the anomaly profile of infected hosts: before and after the tar-
geted noise injection attacks the hosts occupy a similar percentile
for the number of NXDOMAINs queried. Small community attack
results show that the traditional way of choosing hyperparameters
for generating graph embeddings is insufficient when we analyze
the system in an adversarial setting, because it creates a large area
for possible small community attack instances. While following the
accepted methodology for selecting the rank for SVD and hyper-
parameters for node2vec, all DGA clusters can be hidden in noisy
clusters by subdividing the infected hosts into smaller groups to
sacrifice some agility, even while using hundreds of DGA domains.
Even in the minimal knowledge case where the small community
attack cannot be tested, attackers can sometimes still hide.

5.1 Choosing Hyperparamters
First, we carefully choose hyperparameters for the graph clustering
methods in Pleiades to ensure high quality clusters are generated.
Figure 11 shows the results used to determine the appropriate
hyperparameters.

5.1.1 Spectral Clustering. We use the scree plot shown in Fig-
ure 4 to choose the rank of SVD. We fix the rank of the SVD to be
35, where the scree plot plateaus. While different than the 15 used
in the original Pleiades implementation [9], the underlying datasets
are different so it is not unreasonable to find different ranks.
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Figure 5: Using cluster validity metrics to choose walk
length.

5.1.2 Community Discovery. We use the best partition method
from the NetworkX community discovery library [61] which im-
plements the Louvain algorithm [14]. The Louvain algorithm ef-
ficiently extracts good communities on the graph by optimizing
the modularity metric, which measures the density of links within
communities in comparison to outside them. It first sets each node
to be its own community, and iteratively merges them to maximize
modularity. The algorithm stops when a local maxima is reached.
This community detection algorithm scales to large network with
hundreds of millions of nodes.

5.1.3 node2vec. We use traditional cluster validity metrics to
compare different hyperparameters of node2vec. Twelve DGA mal-
ware families, including both known and newly detected ones, were
used as reference clusters. We use validitymetrics including Adjusted
Rand Index, Completeness, Fowlkes-Mallows index, Homogene-
ity, Normalized Mutual Information (NMI), purity, and V-Measure
score. We first choose context size six, which has the first highest
validity scores. Several larger context sizes generate equal validity
scores, but they produce noisier clusters. This is because that larger
context sizes in DNS graphs tend to include more noisy nodes, such
as popular benign NXDOMAINs, or popular hosts that are likely
proxies.

Then we choose the walk length according to Figure 5. Multiple
walk length values produce high validity scores, but we choose
walk length 20, which corresponds to the second highest peak.
Because using walk length 20 generates cleaner Murofet clusters
than a walk length smaller than 10, due to the fact that longer walk
length provides more samples of neighborhoods and the model is
learned better. The number of walks per node, dimensions, and
SGD epoch does not show much difference. We decide on 15 walks,
60 dimensions, and one learning epoch after manual inspection.
Lastly, we use a uniform random probability to choose the next
node in the random walk process.

5.2 Targeted Noise Injection
We run our version of Pleiades to generate all attacker graphs.
Four DGA families were identified: Pykspa, Suppobox, Murofet,
and Gimemo. For each we extract the attacker graphs (G) and the
target domains (V ). These domains are labeled using the classifier
from Section 4.1.1. Before and after the attack, there can be multiple
clusters formed withinG andG ′, depending on the graph clustering
technique. We use the classifier model to test how likely it is that
each cluster belongs to the true DGA malware family, both before
and after the attack. We present the overall distribution of the
predicted class probabilities to show the impact of the attacks.

We use different types of noisy domains at different knowledge
levels. For a DGA, these nodes are new NXDOMAINs (V ′) that
will be classified as benign, also queried by the infected hosts (U ).
In the minimal knowledge case, we create a DGA algorithm that
is classified as benign. It is a dictionary DGA that uses the most
popular Englishwords frommovie subtitles [23], popular web terms,
and the top one million Alexa domains. We randomly add numbers
and dashes, and randomly select a top-level domain from four
choices. In addition, we generate some punycode domains that
start with the character sequence “xn–”, and some domains with
a “www” subdomain. We generate 59,730 verified NXDOMAINs.
In the perfect and moderate knowledge cases, the adversary uses
existing, unpopular NXDOMAINs from G and the surrogate dataset,
respectively.

5.2.1 Spectral Clustering. Figure 6a shows the classifier’s pre-
dicted true class probabilities from before the attack is mounted,
and after the minimal, moderate, and perfect knowledge targeted
noise injection attacks are performed. For each knowledge level,
we inject two different levels of noise as described in Section 5.2
and re-run the clustering and subsequent classification to assess
the damage from the targeted noise injection. Recall that we try
two attack variants, attack variant 1 and 2, where we inject one
or two mirrored sets of vertices and edges, respectively. This is to
both i) understand how much noise is needed to yield successful
evasion, and ii) determine the cost incurred by adding noise.

Spectral clustering generates 267 DGA clusters from the four mal-
ware families across 12 days. Before the attack, only 0.4% clusters
(1 out of 267) are predicted with the wrong labels. In comparison,
after the attacks, all clusters are predicted with the wrong labels.
Next, we will examine the predicted class probabilities change in
the true class label.

Figure 6a uses the violin plots to show the distribution of pre-
dicted class probabilities for the true DGA families, before and after
the attacks. The circle is the median value, the thick line within
the violin indicates interquartile range, and the thin line depicts
a 95% confidence interval. The shape of the violin shows the dis-
tribution of the probability values. For example, the first violin in
Figure 6a has a median of 100% predicted class probabilities, and all
data points in the interquartile range have 100% probability value.
Specifically, before the attacks, 238 clusters are predicted with 100%
class probability that they belong to the true class, and only 28
clusters have a probability between 60% and 100%. For example,
the Pykspa cluster had a class probability of only 10% because it
contained only two domain names that had very different feature
distributions from the majority of Pykspa clusters. The two variants
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of the attack introduced at least 50% and 66% noise to the DGA
clusters.

Minimal Knowledge. After the attacks, we classify each new
adversarial cluster containing target domains and plot the target
class probability distributions in the Figure 6a. Attack variant 1
(“Minimal Benign DGA 1”) generated new clusters with ≤ 80%
predicted class probability, with a median of 0%. The predicted
class probabilities of 84% of the new clusters drop to zero. Attack
variant 2 further decreases the classifier prediction confidence, as
shown by “Minimal Benign DGA 2” in Figure 6a. After injecting two
benign DGA domains, the predicted class probabilities of 87% of the
new clusters plummet to 0%. The overall distribution of prediction
confidences also shifts downward compared to “Minimal Benign
DGA 1”.

Perfect Knowledge. Themedian of predicted class probabilities for
DGA malware families drops to 10%. As depicted by “Perfect Long
Tail 1” in Figure 6a, 86% of adversarial clusters were assigned the
probabilities of belonging to the true DGA class that are at most 10%
. The distribution of class probability values has a smaller variance
compared to those in the “Minimal Benign DGA 1”. “Perfect Long
Tail 2” in Figure 6a shows that the maximum prediction confidence
is 30%, slightly lower than the maximum 40% confidence from the
targeted noise injection attack of “Minimal Benign DGA 2”.

Moderate Knowledge. We see similar results for the two targeted
noise injection attack variants in the moderate knowledge case as in
the other cases: a strong drop in predicted class probabilities, with
a smaller, more compact distribution of values for attack variant
2. After attack variant 1, 98.3% of new clusters were assigned less
than 20% confidence; after attack variant 2, 98.8% of new clusters
have less than 20% confidence.

Spectral clustering can be largely defeated at all knowledge levels
using the targeted noise injection attacks.

Since previous experiments show that minimal knowledge at-
tackers can carry out targeted noise injection as effectively as more
powerful attackers, we will simply demonstrate that the same tar-
geted noise injection attack variant 1 in minimal knowledge also
works with community discovery and node2vec.

5.2.2 Community Discovery. We use the same set of DGA do-
mains labeled in Spectral Clustering for evaluation. Before the
attack, 80% clusters can be predicted with the correct label, which
dropped to 2% after the attack. Figure 6b shows the predicted class
probabilities for communities containing all target domains before
and after the attack. Before the attack, the median of predicted
probabilities is 90%, and the interquartile range is from 50% to 100%.
Specifically, 71 communities contain target domains, among which
ten communities only contain one target domain, and seven commu-
nities have between 40% to 70% target domains. These noisy com-
munities formed the lower part of the distribution, with ≤ 50% pre-
dicted class probabilities in “Community Before Attack”, as shown
in Figure 6b. After the attack, the median class probability craters
to 0%. Overall 98% of new communities were predicted with lower
than 50% probability of belonging to the true class, and 86% of
communities have lower than 10% class probabilities.

This demonstrates that the targeted noise injection attack is also
effective against the community discovery algorithm.

Before Attack < 95th Percentile, 9.12% of hosts
Average Increase From Percentile To Percentile
Attack Variant 1 69.86% 88.73%
Attack Variant 2 69.86% 93.98%
Before Attack >= 95th Percentile, 90.88% of hosts
Average Increase From Percentile To Percentile
Attack Variant 1 99.74% 99.85%
Attack Variant 2 99.74% 99.88%

Table 2: Anomaly cost as percentile of the distinct number of
NXDOMAINs queried by hosts, before and after the attack.
Only 9.12% of infected hosts become more suspicious, while
the rest remain the same.

5.2.3 node2vec. Using the same set of DGA domains labeled in
Spectral Clustering, before the attack, 89% clusters can be predicted
with the correct label, which dropped to 0.8% after the attack. Fig-
ure 6b shows that, before the attack on node2vec, the median of
predicted probabilities is 100%, and the interquartile range is from
90% to 100%. A total of 85% of clusters were predicted with at least
70% class probability. After the attack, 92% clusters have at most
10% predicted class probabilities.

Targeted noise injection attack also evades node2vec embeddings.

5.2.4 Targeted Noise Injection Costs. It is simple for malware to
query additional domains, however, infected hosts engaging in such
queries may become more suspicious and easier to detect due to
the extra network signal they produce. This may cause the anomaly
cost of the targeted noise injection attack to be high enough to
render it useless.

We analyze the anomaly cost by measuring the infected host
percentile of the NXDOMAIN distribution both before and after the
attacks for the two variants of the targeted noise injection attacks,
summarized in Table 2. Before any attack, only 9.12% of infected
hosts ranked lower than 95th percentile, and the remaining 90.88%
of them ranked higher than 95th percentile. This means that, with-
out any attack, infected hosts were already querying more unique
NXDOMAINs than most hosts in the network. However, doing tar-
geted noise injection attacks further increases the percentile ranks
of the infected hosts, but not substantially.

We separated the results based on whether infected hosts were
querying fewer domains than 95% of all hosts in the local network.
Table 2 shows that among the 9.12% infected hosts ranked lower
than 95th percentile before the attack, they increased from an aver-
age percentile of 69.86% to 88.73% after the targeted noise injection
attack variant 1. Furthermore, they increased to 93.98% after attack
variant 2. However, 90.88% of infected hosts did not become more
anomalous. They were ranked higher than the 95th percentile be-
fore the attack. Their average percentile increased by 0.11% after
attack variant 1, and by 0.14% after attack variant 2. Because they
were querying more domains than other hosts before the attack,
injecting noise does not change their percentile substantially.

The majority of hosts had little change in “suspiciousness”, whereas
a small percentage of hosts increased their suspiciousness after the
targeted noise injection attacks.
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(a) Spectral Clustering: Predicted class probabilities.
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(b) Community Discovery and
node2vec: Predicted class probabili-
ties.
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(c) Retraining: Predicted class probabilities.

Figure 6: Figure 6a: Predicted class probabilities before the targeted noise injection attack and after two variants of the targeted
noise injection attack in minimal, moderate, and perfect knowledge. Figure 6b: Predicted class probabilities before and after
the targeted noise injection attacks for community discovery and node2vec. Figure 6c: Predicted class probabilities under
different attacks after retraining including the “Minimal Benign DGA 1” clusters.

5.3 Small Community
We choose a group of 618 domains and 10 infected hosts belonging
to Suppobox as the basis for the small community attack. They form
a community using the community discovery algorithm, and two
clusters using spectral or node2vec embeddings. A small community
attack is successful if and only if all DGA domains join either the
“death star,” or clusters where the subsequent classifier does not
predict them as the true malware DGA class. Recall that the death
star cluster contains tens of thousands of domains that cannot
be properly classified. In all experiments, the small community
plots denote the configurations where an attack succeeds based on
the aforementioned criteria. This is represented by green regions
(see Figure 7) when the “death star” is joined, or white cells when
the noisy clusters cannot be predicted as the true class label (see
Figure 9) when using node2vec.

5.3.1 Spectral Clustering. As described earlier, the small com-
munity attack can only be verified in the perfect and moderate
knowledge cases. In the minimal knowledge case, however, an at-
tacker can still mount the attack by randomly removing edges and
nodes, as described in Section 2, while hoping for the best.

Minimal Knowledge. The upper-leftmost plot in Figure 7 demon-
strates the possible successful configurations for mounting the
small community attack by randomly removing nodes and edges.
The plot shows the remaining number of NXDOMAINs on the
Y-axis (|V | − nv ) and the remaining number of connections from
infected hosts for each NXDOMAIN on the X-axis (|U | − ne ). The
shaded region shows approximately a 75.16% success rate for an
attacker with no knowledge of the defender’s graph G. While a
minimal knowledge attacker cannot guarantee their attack will
succeed, they nonetheless have a high chance of success.

Perfect Knowledge. The upper-left plot in Figure 7 depicts a suc-
cessful small community attack area when the computed SVD rank
is 35. The figure shows that only a small set of configurations with
380 to 618 DGA domains, each queried by between 3 to 10 random
hosts, were unable to successfully launch a small community attack.
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Figure 7: Different number of eigenvalues.

The cost of the small community attack is very low against the sys-
tem, which is configured with rank 35 and runs in this network. For
example, an adversary controlling the DGA does not need to give
up any infection, but only needs to reduce the number of infected
hosts that query a common set of DGA domains from 618 to 380 in
order to hide the domains. In this case, by removing nv = 238 NX-
DOMAINs, the attacker does not lose any additional host querying
activitiesmin(ne ) = 0. But if the attacker needs extra redundancy
provided by 460 distinct NXDOMAINs, each domain can only be
queried by a subset of 5 hosts. Then nv = 158, and accordingly,
min(ne ) = 5. In this case, the attacker does not need to lose control
of any infected hosts, but she does need to coordinate each five
infected hosts to query a subset of distinct NXDOMAINs that do
not overlap with each other.

Moderate Knowledge. After reducing the number of DGA do-
mains and the number of infected hosts per domain to the suc-
cessful attack area shown in Figure 8, the DGA domains join the
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Figure 8: Success area for joining the death star of the surro-
gate dataset in themoderate knowledge case. All the success-
ful attack configurations worked in the ground truth net-
work.

surrogate death star. We test that these values also work to join
the original death star. Because the original network size is larger
than the surrogate network size, the real successful area (the top-
left plot in Figure 7) is much bigger than the one shown Figure 8.
Thus, the small community attack works with moderate knowledge
when the surrogate dataset is a smaller network than the original
network. If the surrogate dataset is a larger network, the adversary
may miscalculate the cost of joining the death star, which may not
work in the original network. By using such a surrogate dataset, the
adversary will likely choose fewer DGA domains and their shared
hosts to simulate a successful attack, compared to the ideal case in
perfect knowledge. In other words, the practical cost of launching a
small community attack with moderate knowledge is more than the
minimal cost of such an attack in the original network. We explore
the effect of network size in Section 5.3.4.

Spectral clustering can be evaded using the small community attack,
even when the attack cannot be verified by the attacker with a success
rate of 75%+. More sophisticated attackers can always evade.

5.3.2 Community Discovery. Unlike graph embedding techniques
that lose information about smaller components of the graph, com-
munity discovery algorithms do not lose information and can prop-
erly handle portions of G with exactly one edge. Rather than clus-
tering poorly with other small components, they are considered to
be separate communities. So the cost of the small community attack
is much higher than with graph embeddings because attackers must
generate singletons that are small enough to evade classification,
forcing the attacker’s graph to be disconnected. Therefore, they can
evade clustering with the cost of losing their ability to efficiently
manage their bots. For example, to evade community discovery
in the example presented in Figure 2, an attacker would have to
use the modified attack graph G ′4 and the drop from D(G) = 0.5
to D(G ′4) = 0.25 is enough to consider the attack cost too high. In
the DGA case, this would mean each infection would need its own
distinct domain-name generation algorithm, which would be an
exceedingly high cost for an attacker. As such, we do not compute
results for small community attacks on community discovery.

Community discovery is resistant to the small community attack
due to the high costs it would cause the attacker, however, spectral
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Figure 9: Success area of small community attacks with dif-
ferent context size.

methods and node2vec are more likely to be used by defenders as they
result in cleaner clusters and better classification results.

5.3.3 node2vec. The third plot in Figure 9 shows that the small
community attack is still possible with node2vec, using aforemen-
tioned hyperparameters (Section 5.1). The attack is possible when
the number of shared hosts is 1 (the first column except the top cell),
and when the number of DGA domains is ≤ 40 (the bottom two
rows). Elsewhere, the attack succeeds randomly due to the random
walk. In summary, the small community attack is definitely possible
with very small component sizes. Compared to SVD, the cost is
higher here. For example, the attacker needs to give up nv = 578
unique NXDOMAINs in a day, along with ne = 0, for the small
community attack to be successful. But if the attacker is not willing
to give up such cost, the small community attack is not guaranteed
to succeed given the randomness of neighborhood sampling. How-
ever, if a minimal knowledge attacker randomly chooses any nv
and ne for a small community attack, she will have a 70.65% attack
success rate shown by the third plot in Figure 9.

node2vec is susceptible to the small community attack, but with
fewer guarantees and higher costs than in the spectral case, due to its
inherent randomness. node2vec being used in Pleiades would render
the system more resilient against small community attacks.

5.3.4 Small Community Costs. The cost of the small community
attack is affected by both the size of network and change in density
when the attack is performed.

Size of Network. The network size is related to the number of
nodes (hosts and domains) and the number of edges (the query
relationship). As a straightforward way to model the network size,
we randomly sample the hosts in the ground truth network dataset
along with all domains queried. We also keep the same attacker
subgraph G, containing the Suppobox DGA community with 10
infected hosts and 618 DGA domains, along with other domains
queried by these hosts for the experiment.

Figure 10 shows the small community attack results by sampling
10% to 90% of all hosts. When only 10% of hosts were sampled, the
small community attack failed in most areas of the plot. The attack
success area increases as the network size gets larger. This means
that the cost for small community attack is lower in a larger network
than in a smaller network, given the same hyperparameters. A
larger network is harder to accurately represent in an embedding,
which provides more areas for attackers to hide and evade.
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Figure 10: Different sizes of the network dataset.

Spectral Clustering
Density

Join Death Star Median Maxium Minimum Cost
SVD rank 35 0.078 0.61 0
SVD rank 50 0.11 0.45 0.03
SVD rank 80 0.065 0.26 0.22
SVD rank 100 0.052 0.19 0.29
SVD rank 200 0.0032 0.10 0.38
SVD rank 300 0.026 0.26 0.22

node2vec
Density

Median Maxium Minimum Cost
Neighborhood Size 6 0.026 0.065 0.415

Table 3: Agility cost of small community attacks under dif-
ferent hyperparameter configurations.

A moderate knowledge level attacker should attempt to acquire
a surrogate network dataset smaller than the ground truth network
dataset for a safe estimate of their small community attack cost.

Agility Cost. By removing nodes and edges, the attacker loses
redundancy. For example, hosts need to query fewer DGA domains,
or malware can be allowed fewer malicious actions. We measure
the agility cost by the change in density of the attack graph. Den-
sity captures the number of edges present in the attack graph over
the maximal number of possible edges. In Section 5.3, Equation 2
defines the attack graph density before the small community at-
tack; and Equation 3 defines the density after the attack. Before the
attack, D(G) = 0.48 for the Suppobox community. For each SVD

rank parameter, we record attack configurations that were success-
ful small community attacks as green ares in Figure 7. There are
some outliers outside the continuous area. Although these attacks
do not make NXDOMAINs join the death star, they move NXDO-
MAINs to clusters that cannot be predicted with the correct label.
To measure the minimum agility cost, we exclude the outliers by
only calculating attacker graph density that resulted in joining the
death star. Table 3 summarizes the median and maximum attacker
graph density in these small community attacks, with the minimum
cost represented by the difference between D(G) andmax(D(G ′)).
When the SVD rank is 35, themax(D(G ′)) to join the death star is
slightly bigger than D(G), which means there is no cost in launch-
ing the small community attack. In this case, the attacker can evade
while having more connectivity. As the SVD rank increases, the
attacker graph density is reduced, which means a successful attack
is more costly to the adversary. Also, the minimum cost increases
as the SVD rank increases. For example, when the SVD rank is 80,
the minimum cost is 0.22, reducing the attack graph density from
0.48 to 0.26. The attacker needs to reduce the number of distinct
DGA domains from 618 to 160 to evade, but each domain can be
queried by all infected hosts. In comparison, when the SVD rank is
200, the minimum cost is 0.38. The attacker needs to further reduce
the number of distinct DGA domains to 60 to evade, with each
domain queried by all infected hosts. The attack graph density is re-
duced from 0.48 to 0.1, losing 79% ( 0.380.48 ) of queries to distinct DGA
domains. This means that tuning hyperparameters can increase
the small community attack cost and potentially render this attack
ineffective.

Similarly, for node2vec, the minimum cost of a certain small com-
munity attack is higher than spectral clustering. We compute the
attacker graph density only for the white area in Figure 9 without
randomness, i.e., the first column and bottom two rows. In contrast
to spectral clustering, node2vec requires a much higher minimum
cost for a guaranteed small community attack, which indicates that
node2vec is more resilient to this attack. The smallest communi-
ties in Figure 9 (i.e., the first column and bottom two rows) are
likely undersampled, because choosing 15 walks per node and walk
length 20 using cluster validity in Section 5.1.3 prefers labeled DGA
communities that are relatively bigger, which makes few neighbor-
hood observations for extremely small islands insignificant, and
thus allows small community attacks. Note the randomness in the
remaining portion of the plot. Since node2vec uses the random
walk process to sample the neighborhoods of all nodes, there exists
randomness in the neighborhood observations. This shows that
the randomness inherent to node2vec makes the attacks succeed at
random in the remaining portion of Figure 9. This both suggests
a system like Pleiades would benefit from node2vec to reduce the
guarantee of attacks, as well as allow a defender to identify if an
attacker is evading by chance encounters where the evasion fails
over time. While the minimum attack cost is the same with different
neighborhood sizes for a guaranteed successful attack, the attack
success rate changes. The neighborhood sizes 2, 4, and 6 have attack
success rate 65.16%, 60.65%, and 70.65% respectively (Figure 9). We
will discuss how we can use different hyperparameters to further
reduce the success rate of the small community attack in Section 6.2.
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False Positive Rate
Model Pykspa Gimemo Suppobox Murofet
Original 0.32% 0.29% 0% 0%
Model A 1.64% 0.39% 0.10% 0%
Model B 1.62% 0.10% 1.23% 0.30%
Model C 1.46% 1.17% 1.23% 0%

Table 4: False Positive Rate for four DGA families before re-
training, and after retraining with three types of noise.

These costs further demonstrate node2vec’s superiority over spectral
clustering in resisting small community attacks.

6 DEFENSE
Since the noise injection attack and the small community attack
violate the fundamental assumptions used by graph clustering tech-
niques, it is very hard to completely eliminate the problem. In this
section, we propose two defense techniques that help Pleiades re-
tain its detection capabilities against the two attacks. The first one
is to train the classifier with noise, which remediates the noise
injection attack to some extent. The second one is to use the small
community attack as an adversarial guideline to choose better hy-
perparameters for graph embeddings, which increases the cost of
launching a successful small community attack.

6.1 Training Classifier with Noise
By retraining the classifier, it becomes more resistant to noise that
could be injected by the adversary in the unsupervised phase of
Pleiades. We used domains from the benign DGA to poison the clus-
ters of malicious DGAs. We retrained the classifier using clusters
generated by the noise injection attack variant 1 (“Minimal Benign
DGA 1”, m = 1, Algorithm 1 in Section 5.2) from SVD, yielding
model A. We tested model A against the adversarial clusters gener-
ated by the same noise injection attack under community discovery
and node2vec. The first two violins in Figure 6c show that model
A increases the overall predicted class probabilities compared to
the “After Attack” violins in Figure 6a. In community discovery, the
accuracy increased from 2% to 98%; and in node2vec, the accuracy
increased from 0.8% to 98%. To summarize, retraining with noisy
clusters containing a benign DGA from SVD can remediate the
same attack on community discovery and node2vec. We see this
same effect even when the noise levels are doubled (m = 2, Algo-
rithm 1 in Section 5.2). When models were trained with half the
noise (m = 1, Algorithm 1 in Section 5.2), they were able to more
accurately predict the correct label. Among them, only an average
of 7.3% clusters are predicted with the wrong labels, decreased from
100% before retraining.

In comparison with Figure 6a, the average prediction confidence
increased significantly. Before retraining, the average prediction
confidence of “Minimal Benign DGA 2”, “Moderate 2”, and “Perfect
Long Tail 2” are 10%, 20%, and 20%. After retraining, they increased
to 70%, 90%, and 80%, respectively. The accuracy of the models
remain roughly the same before and after retraining. However,
retraining with noisy clusters increased the false positive rate in
most cases (Table 4).

It is important to note that this defense only trains the classifier
with noise that has been witnessed. New noise will appear, but the
fundamental attack on the unsupervised component remains the
same. Therefore, defenders will be alerted by plumetting accuracies
in their models. Our defenses are simple and future work should
be done to make clustering systems more robust.

6.2 Improving Hyperparameter Selection
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Figure 11: Figure 11a: Using the small community attack to
choose the number of eigenvalues for SVD. Figure 11b: Using
the small community attack to choose the length ofwalk for
node2vec.

Small community attacks show that the traditional ways of choos-
ing hyperparameters (Section 5.1) is not enough when facing adver-
saries. Luckily, the small community attack can be used to choose
more resistant hyperparameters. We show that better selection can
reduce the number of successful small community attack instances
from our previous experiments.

We plot the successful attack rate under different number of
eigenvalues in Figure 11a. The successful attack rate decreases as
the number of eigenvalues computed increases, and the line plateaus
after 200 eigenvalues. It means that a defender running Pleiades
should select the first 200 eigenvalues, instead of 35 indicated by
the scree plot in Figure 4. If we use the small community attack in
this way, we can choose better parameters for the system and also
know under which parameters the system is vulnerable.

Similarly, for node2vec, using the small community attack to
choose hyperparameters can reduce the attack success rate. The
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cluster validity metrics suggest we choose neighborhood size six,
and walk length of 20. However, if we evaluate the graph clustering
using the success rate of the small community attack, these hyperpa-
rameters are not optimal. First, for the neighborhood size, Figure 9
shows that a smaller neighborhood size of four introduces a lower
attack success rate. Second, we plot the attack success rate under
different walk lengths in Figure 11b. This figure shows that a walk
length of 12 is preferred over 20, because the former allows 51.29%
attack success rate compared to 61.61% of the latter. In other words,
the smaller neighborhood size and shorter walk length can tolerate
the small community attack better, presumably because they do
not oversample larger communities with more distinct neighbor-
hood observations. In other words, smaller communities are not
undersampled. We recommend using the small community attack
success rate to evaluate the clustering hyperparameter selection, in
addition to traditional cluster validity indices.

7 DISCUSSION
We acknowledge that details surrounding the implementation of the
attacks are specific to Pleiades, however, the graph representation
suggests the attacks may work on other graph-based systems. In
this section, we briefly discuss issues to consider to generalize the
attacks.

Nodes and edges can be trivially injected or removed in the graph
Pleiades uses, which are generated by malware resolving domain
names. In other security contexts, the set of injectable/removable
nodes varies. It is possible that some nodes and edges must exist in
order for certain attack actions to succeed. For example, a phishing
email using a malicious attachment requires at least the read system
call to successfully infect a host, which cannot be removed from
the system call graph. On the other hand, it can be difficult to add
certain nodes and edges. Therefore, in addition to the anomaly cost
(Section 5.2.4) and agility cost (Section 5.3.4), the action of graph
manipulation itself has costs depending on the data that underlies
the graph representation. This should be carefully considered when
generalizing the attacks to other systems and we leave this to be
future work. Tighter costs may exist, but our approaches point in a
promising direction.

8 CONCLUSIONS
We have demonstrated that generic attacks on graphs can break
a real-world system that uses several popular graph-based model-
ing techniques. These attacks can often be performed by limited
adversaries at low cost; however, simple defenses can reduce their
effectiveness or likelihood of success. To summarize how defenders
can improve their systems: hyperparameter selection should be
optimized for reducing the success rate of small community attacks,
and retraining can be used to lessen the impact of noise injection
attacks. Furthermore, state of the art graph embedding techniques
like node2vec appear to be more resistant against small commu-
nity attacks, which suggests Pleiades and other systems would be
harder to adversarially manipulate using node2vec over community
finding, or spectral methods (see Figure 9 vs. Figure 7).
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Figure 12: Cumulative distribution of distinct number ofNX-
DOMAINs queried by each host in 12/18/2016.

DGA Family # of Domains # of Feature Vectors
Chinad 4,608 18
Corebot 720 18
Gozi 864 72
Locky 360 36
Murofet 54,720 56
Necurs 36,864 18
NewGOZ 18,000 18
PadCrypt 1,728 36
Qadars 3,600 18
Qakbot 180,000 35
Ranbyus 720 18
Sisron 739 19
Symmi 1,152 18
Pykspa 90,300 48
Pykspa 1,190 40
Gimemo 9,144 17
Suppobox 12,846 40

Table 5: DGA families contained within our ground truth
dataset.

10 APPENDICES
10.1 Unique Domains queried by Hosts
Figure 12 shows the cumulative distribution for distinct number of
NXDOMAINs queried by hosts seen on 12/18/2016 in the network
datasets from the telecommunication network. The CDF shows
that a host querying two distinct NXDOMAINs is at the 48th per-
centile, and a host querying 10 distinct NXDOMAINs is at the 95th
percentile.

10.2 Labeled DGA Families
We use default parameters to generate different versions of the
malware families for 18 different seed dates. The number of domains
generated for each malware family is recorded in the top part of
Table 5.

10.3 Reimplementing Pleiades
We implement a simplified version of the Pleiades DGA detection
system. We follow the exact next steps to implement the graph
clustering and modeling components of Pleiades.

(1) From the NXDOMAIN query data, we filter out hosts that
only queried one domain name in a day (as the authors of
Pleiades did).

(2) We construct an associationmatrix representing the bipartite
graph between hosts and the NXDOMAINs they queried.
Each row represents one host and each column represents
one NXDOMAIN. If host i queried NXDOMAIN j in that
day, we assign weightwi j = 1 in the matrix. Otherwise, we
assignwi j = 0. Then, each row is normalized such that the
sum of weights is one.

(3) Next, we do Singular Value Decomposition (SVD) over this
matrix and keep the first N eigenvalues. For our dataset, we
choose N = 35 according to the scree plot of Eigenvalues.
Figure 4 shows that the Eigenvalues line plateaus after N >=
35.

(4) The resulting eigenvectors are used for XMeans clustering.
(5) Once we have the clusters of NXDOMAINs, we extract a

feature vector for each cluster, which will be used for classi-
fication. We have four feature families: length, entropy, pair-
wise jaccard distance of character distribution, and pairwise
dice distance of bigram distribution. This yields a 36-length
feature vector for classification that relies on properties of
the domain strings themselves. Please refer to Section 4.1.1
in the original Pleiades paper [9] for further details.

(6) Finally, the classifier uses the feature vectors of the clusters
to detect existing, known DGAs and identify never-before-
seen DGAs.

To obtain DGA domains as a training dataset for the classifier, we
analyzed dynamic malware execution traffic and executed reverse-
engineered DGA algorithms. Firstly, we identified NXDOMAINs
that were queried by malware md5s by analyzing malware pcaps
obtained from a security vendor. We used AVClass [51] to get the
malware family labels of those md5s. Using this method, we la-
beled pykspa, suppobox, and gimemo malware families, which
were active in our dataset. We extract one feature family per clus-
ter for these. Secondly, we use reverse engineered DGA domains
to compensate limited visibility of DGAs active in the network
dataset. Although only Pykspa, Suppobox, and Murofet domains
have matches in active clusters, we extract one feature vector for
each version’s daily domains of 14 DGA families from the reversed
engineered DGA domain dataset. Table 5 shows the distribution of
the number of features vectors from the reverse engineered DGAs
(top) and those seen in clusters (bottom).

We trained the classifier with 17 classes, including 16 malware
families and one manually labeled benign class. We labeled benign
class from clusters containing mixture of all kinds of benign do-
mains, as well as clusters containing disposable domains (e.g., DNS
queries to Anti-Virus online reputation products [19]).

We performed model selection to choose among the following
algorithms: Naive Bayes, Linear SVM, Random Forest, Logistic
Regression and Stochastic Gradient Descent Classifier. After the
analysis of the performance of the different classifiers, we chose to
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New DGA C
www.mazubykuhat[.]kz
www.kesgunvux[.]kz
www.qatwafpyg[.]kz
www.hucadunvucy[.]kz
www.soruqlyahat[.]kz

New DGA A
ns1d8qh2t51tndo5v3[.]net
kcprqut8ub4zgsrfst[.]ru
5qq6fzk452ijexoavi[.]net
niv62bplro1yre1efs[.]cn
2x5d2mg73yjnc3mitm[.]com

New DGA B
www.alltraveltweets[.]com
www.kenfeverbusterrec[.]com
www.profnimorningmap[.]com
www.heavyninjaeternal[.]com
www.hubasicsbinjames[.]com

New DGA D
zmvctpqqibxymed0[.]com
algxwtzbnnwtbvo0e[.]com
neuqfxffaoazda1e[.]com
zwaikccluviktrh[.]com
jwioadkvjlnfrl[.]com

New DGA E-v1
wmdgu1a6.myrkraverk[.]net
0nxnc9mu.plorp[.]com
dk5ikx03.strangled[.]net
mp9693zy.iiiii[.]info
cgakona8.myfruit[.]org[.]ru

New DGA E-v2
iyjiy.teakwondo[.]one[.]pl
39mig.mafia-ag[.]info
lzj2q.good[.]one[.]pl
w9u1k.no-ip[.]org
z23uq.ignorelist[.]com

New DGA E-v3
r7g4en.professionalcopy[.]net
0akah1.myvnc[.]com
cjch25.nitrousexpress[.]info
b8sl4c.bot[.]nu
zw7wj8.aintno[.]info

Figure 15: Newly found DGAs.
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Figure 13: ROC curves for 16 malware DGA classes and one
benign class.
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Figure 14: Micro and macro ROC curves.

use Random Forest as our classifier. Random Forests are similar to
Alternative Decision Trees, a boosted tree-based classifier, which
were used in the original Pleiades paper. We tested our classifier
with five fold cross-validation and measured an average accuracy
at 96.08%, and a false positive rate of 0.9%. Figure 13 shows the
multi-class ROC curves of the classifier performance. Figure 14
shows the micro and macro ROC curves of the multi-class classifier
in our implementation of Pleiades.

10.4 Current DGA Landscape
We ran the DGA detection system over anonymized network traffic
from a Recursive DNS server in a telecommunication provider, from
December 18, 2016 to December 29, 2016.

Newly Discovered DGAs. We found 12 new DGA malware fami-
lies. Figure 15 shows 5 of them. New DGA A is classified as similar
to the DGA Chinad, with a total of 59,904 domains. The generated
domains have a fixed length of 18 characters and use five different
tlds: .com, .net, .cn, .biz, and .ru. Chinad has similar characteristics
in domain names, but its domain length is 16 characters, and it uses
two additional tlds: .info and .org. NewDGAB is a dictionary-words
DGA that is classified as similar to Gozi. Gozi generates domains by
combining words from word lists such as Requests for Comments
(RFC), the Ninety Five Theses of Martin Luther in its original Latin
text, and GNU General Public License (GNU GPL). In 12 days, we
observed 9815 domain names from this DGA, with 10,435 infected
hosts. New DGA C is classified as similar to Gimemo. It repeatedly
uses bigrams and trigrams as units for composing domain name
strings. We found 6,738 domains for new DGA C. Most of the do-
mains from DGA C follow a pattern of consonant-vowel-consonant
at the beginning, usually followed by another similar pattern or a
sequence of vowel-consonant-vowel, which makes the generated
domains appear almost readable. Nevertheless, New DGA C gener-
ated domains did not follow the character frequency distribution
for any of the languages that use the English or similar alphabets.
The length of the generated domains is not fixed but it appears
to be around 10 characters with either a character added or re-
moved. New DGA D uses .com tld, and second-level labels varying
between 12 and 18 characters. New DGA E-v1 iterates through both
algorithm-generated second level domains and child labels.

Evasion Attempts in the Wild. The DGAs of qakbot and pykspa
provide us with evidence that the malware authors are attempting
to avoid or obstruct detection. A special mode of Qakbot is trig-
gered when the malware detects that it is running inside a sandbox
environment. Specifically, the seed of the algorithm is appended
to generate redundant domains that won’t be used as actual C&C.
Similary, Pykspa generates two sets of domains based on two differ-
ent seed sets, which appear identical to a human analyst as if there
were only one set of generated domains. Different than Qakbot,
in normal operation Pykspa queries both sets of domains, along a
list of benign domains. This kind of behavior could be a method to
detect analysis efforts. If an analyst sets the environment to provide
answers to these “bogus” queries, it could indicate anomaly to the
malware. Generating a large number of “fake” domains could also
increase the cost of sinkholing the botnets. It makes the sinkhol-
ing operation more likely to fail to cover all of the actual C&C
domains [38]. These efforts appear to be in their infancy in terms
of complexity and effectiveness at this point. If malware authors
unleash their creativity in the future, we might come across more
elaborate evasion cases that require a lot more effort to identify
and detect.

Furthermore, we identify instances of DGAs already evading
the classification part of Pleiades by introducing a child label. Our
classifier has low confidence for detecting new DGAs B, C, and
E-v1. Since there are no DGA domains with child labels in the
training dataset, the classifier does not have the requisite knowledge
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to predict such DGAs. After deploying the classifier for 12 days,
we retrained the classifier with additional DGA families observed
from the network. After retraining, our classifier has successfully

identified the following new variants with high confidence: DGA
E-v2 and DGA E-v3.
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